A novel fabrication method of vertically aligned carbon nanotubes by single-stage floating catalyst CVD

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
B. V.N. Sewwandi, A. R. Kumarasinghe, Xing CHEN, P. M.C.J. Bandara, L. Jayarathna, Rohan Weerasooriya
{"title":"A novel fabrication method of vertically aligned carbon nanotubes by single-stage floating catalyst CVD","authors":"B. V.N. Sewwandi,&nbsp;A. R. Kumarasinghe,&nbsp;Xing CHEN,&nbsp;P. M.C.J. Bandara,&nbsp;L. Jayarathna,&nbsp;Rohan Weerasooriya","doi":"10.1186/s13065-025-01460-y","DOIUrl":null,"url":null,"abstract":"<div><p>The single-stage floating catalyst chemical vapor deposition (SS-FCCVD) method using the ferrocene route (e.g., ferrocene: catalyst and camphor: carbon source) offers significant but largely unexplored versatility for the production of carbon nanotubes (CNTs). Our study used the SS-FCCVD method to grow vertically aligned carbon nanotubes (VACNTs) on an alumina ceramic reactor surface at 850 °C under a nitrogen atmosphere. The experimental setup included a camphor/ferrocene ratio of 20:1 and a specific temperature gradient of 21 °C/cm. To minimize the catalyst agglomeration, we positioned the chemical sources at a distance of 15 cm from the inlet of the CVD reactor. Alumina ceramic surfaces proved highly effective for VACNT production, showing minimal agglomeration of iron particles, facilitating the formation of reactive sites essential for VACNT growth. The VACNTs grew readily on alumina ceramic surfaces, forming bundled, forest-like structures with segment lengths up to 1.2 mm and diameters around 60 nm. When compared to conventional substrates, the surface area of the reaction zone substrate increases by up to 705%, resulting in a significant boost in VACNT yield. A detailed evaluation of characterization results confirmed the growth mechanism and behavior of Fe particles such that carbon-encapsulated particles are attached to the inner and outer surfaces of the CNTs. These VACNT surfaces exhibited superhydrophobic properties, similar to the lotus leaf effect. The synthesized iron-dispersed CNTs exhibit exceptional efficiency in Chromium (VI) removal, with an impressive adsorption capacity of 0.206 mmol/m², positioning them as a promising solution for effective water treatment. This scalable SS-FCCVD method using the ferrocene route achieved the longest VACNTs reported to date.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01460-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01460-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The single-stage floating catalyst chemical vapor deposition (SS-FCCVD) method using the ferrocene route (e.g., ferrocene: catalyst and camphor: carbon source) offers significant but largely unexplored versatility for the production of carbon nanotubes (CNTs). Our study used the SS-FCCVD method to grow vertically aligned carbon nanotubes (VACNTs) on an alumina ceramic reactor surface at 850 °C under a nitrogen atmosphere. The experimental setup included a camphor/ferrocene ratio of 20:1 and a specific temperature gradient of 21 °C/cm. To minimize the catalyst agglomeration, we positioned the chemical sources at a distance of 15 cm from the inlet of the CVD reactor. Alumina ceramic surfaces proved highly effective for VACNT production, showing minimal agglomeration of iron particles, facilitating the formation of reactive sites essential for VACNT growth. The VACNTs grew readily on alumina ceramic surfaces, forming bundled, forest-like structures with segment lengths up to 1.2 mm and diameters around 60 nm. When compared to conventional substrates, the surface area of the reaction zone substrate increases by up to 705%, resulting in a significant boost in VACNT yield. A detailed evaluation of characterization results confirmed the growth mechanism and behavior of Fe particles such that carbon-encapsulated particles are attached to the inner and outer surfaces of the CNTs. These VACNT surfaces exhibited superhydrophobic properties, similar to the lotus leaf effect. The synthesized iron-dispersed CNTs exhibit exceptional efficiency in Chromium (VI) removal, with an impressive adsorption capacity of 0.206 mmol/m², positioning them as a promising solution for effective water treatment. This scalable SS-FCCVD method using the ferrocene route achieved the longest VACNTs reported to date.

通过单级浮动催化剂 CVD 制备垂直排列碳纳米管的新方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信