Molecular detection of bacteria isolated from polluted environment and screening their ability to produce extracellular biopolymer flocculants

IF 2.5 Q2 MULTIDISCIPLINARY SCIENCES
Hawraa Qays Al-assdy, Wijdan Hussein Al-Tamimi, Asia Fadhile Almansoory
{"title":"Molecular detection of bacteria isolated from polluted environment and screening their ability to produce extracellular biopolymer flocculants","authors":"Hawraa Qays Al-assdy,&nbsp;Wijdan Hussein Al-Tamimi,&nbsp;Asia Fadhile Almansoory","doi":"10.1186/s43088-025-00621-1","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Microorganism bioflocculants are the large molecules released by microbes during growth and lysis. Bioflocculants are used in remediation wastewater and are thought to be more environmentally friendly. In the present study, 16 bacteria were isolated from hydrocarbons contaminated soil, sludge, and wastewater from different locations (Washing and lubrication stations of Zubair, Qurna, and Jazira, Beach of Shatt Al -Arab, and Al-Shuaiba Refinery) in Basrah city, south of Iraq. The isolates were identified by <i>16S rDNA</i> gene sequencing analysis. All isolated bacteria were subjected to a flocculants production test using a mineral salt medium. Bioflocculant activity was determined using kaolin clay and enhanced by addition cation (CaCl<sub>2</sub>).</p><h3>Result</h3><p>The results showed that bacterial isolates were under 10 genera (<i>Alishewanella, Stutzerimonas, Pseudomonas, Bacillus, Pantoe, Acinetobacter, Escherichia, Exiguobacterium, Franconibacter, Lysinibacillus</i>), and nine isolates were recorded as new strains. Besides, the Phylogenetic tree was constructed to evaluate their close relationship and evolution between them. <i>Alishewanella</i> sp. was the most diverse and dominant genus among sixteen isolated bacteria. The isolates <i>Shewanella chilikensis, Exiguobacterium profundum,</i> and <i>Alishewanella jeotgali</i> were the most effective producing bioflocculant, where the flocculation activity recorded at 92.40%, 92.25%, and 91.65%, respectively. The ion Ca<sup>2+</sup> removes most large molecules and reduces solution absorption from 1.918 (kaolin clay) to 1.258.</p><h3>Conclusion</h3><p>The contaminated environments harbor a diverse bioflocculant producing bacteria. The capacity of bacterial genera to produce bioflocculants varies, requiring the selection of optimal bacteria for bioflocculant production and their application in water treatment as effective alternatives to synthetic flocculants. The considerable flocculation activity seen suggests a potential for industrial applications. Moreover, more research on the process parameters is required to determine the possibility of large-scale production and to identify a compound responsible for flocculation activity.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-025-00621-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beni-Suef University Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43088-025-00621-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Microorganism bioflocculants are the large molecules released by microbes during growth and lysis. Bioflocculants are used in remediation wastewater and are thought to be more environmentally friendly. In the present study, 16 bacteria were isolated from hydrocarbons contaminated soil, sludge, and wastewater from different locations (Washing and lubrication stations of Zubair, Qurna, and Jazira, Beach of Shatt Al -Arab, and Al-Shuaiba Refinery) in Basrah city, south of Iraq. The isolates were identified by 16S rDNA gene sequencing analysis. All isolated bacteria were subjected to a flocculants production test using a mineral salt medium. Bioflocculant activity was determined using kaolin clay and enhanced by addition cation (CaCl2).

Result

The results showed that bacterial isolates were under 10 genera (Alishewanella, Stutzerimonas, Pseudomonas, Bacillus, Pantoe, Acinetobacter, Escherichia, Exiguobacterium, Franconibacter, Lysinibacillus), and nine isolates were recorded as new strains. Besides, the Phylogenetic tree was constructed to evaluate their close relationship and evolution between them. Alishewanella sp. was the most diverse and dominant genus among sixteen isolated bacteria. The isolates Shewanella chilikensis, Exiguobacterium profundum, and Alishewanella jeotgali were the most effective producing bioflocculant, where the flocculation activity recorded at 92.40%, 92.25%, and 91.65%, respectively. The ion Ca2+ removes most large molecules and reduces solution absorption from 1.918 (kaolin clay) to 1.258.

Conclusion

The contaminated environments harbor a diverse bioflocculant producing bacteria. The capacity of bacterial genera to produce bioflocculants varies, requiring the selection of optimal bacteria for bioflocculant production and their application in water treatment as effective alternatives to synthetic flocculants. The considerable flocculation activity seen suggests a potential for industrial applications. Moreover, more research on the process parameters is required to determine the possibility of large-scale production and to identify a compound responsible for flocculation activity.

污染环境中分离细菌的分子检测及细胞外生物高分子絮凝剂的筛选
微生物生物絮凝剂是微生物在生长和裂解过程中释放的大分子。生物絮凝剂用于废水修复,被认为是更环保的。在本研究中,从伊拉克南部巴士拉市不同地点(Zubair、Qurna和Jazira的洗涤和润滑站、Shatt Al -Arab海滩和Al- shuaiba炼油厂)被碳氢化合物污染的土壤、污泥和废水中分离出16种细菌。通过16S rDNA基因测序对分离菌株进行鉴定。所有分离的细菌都采用无机盐培养基进行絮凝剂生产试验。采用高岭土测定生物絮凝剂活性,并通过添加阳离子(CaCl2)增强絮凝剂活性。结果分离得到10属(阿利什瓦氏菌属、Stutzerimonas、Pseudomonas、Bacillus、Pantoe、Acinetobacter、Escherichia、Exiguobacterium、Franconibacter、Lysinibacillus),其中9株为新菌株。构建了系统进化树,评价了二者之间的亲缘关系和演化关系。在16个分离的细菌中,alishhewanella sp.是最具多样性和优势的属。其中,产絮凝剂效果最好的是儿童希瓦氏菌(Shewanella chilikensis)、深逸出菌(Exiguobacterium profundum)和阿利什瓦氏菌(alishhewanella jeotgali),絮凝活性分别为92.40%、92.25%和91.65%。Ca2+离子去除大部分大分子,并将溶液吸收率从1.918(高岭土)降低到1.258。结论污染环境中存在多种生物絮凝剂产菌。细菌种类生产生物絮凝剂的能力各不相同,因此需要选择最佳的细菌来生产生物絮凝剂,并将其作为合成絮凝剂的有效替代品应用于水处理。可观的絮凝活性表明其具有工业应用潜力。此外,还需要对工艺参数进行更多的研究,以确定大规模生产的可能性,并确定对絮凝活性负责的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊介绍: Beni-Suef University Journal of Basic and Applied Sciences (BJBAS) is a peer-reviewed, open-access journal. This journal welcomes submissions of original research, literature reviews, and editorials in its respected fields of fundamental science, applied science (with a particular focus on the fields of applied nanotechnology and biotechnology), medical sciences, pharmaceutical sciences, and engineering. The multidisciplinary aspects of the journal encourage global collaboration between researchers in multiple fields and provide cross-disciplinary dissemination of findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信