Turbulent Power: A Discriminator Between Sheaths and CMEs

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Deep Ghuge, Debesh Bhattacharjee, Prasad Subramanian
{"title":"Turbulent Power: A Discriminator Between Sheaths and CMEs","authors":"Deep Ghuge,&nbsp;Debesh Bhattacharjee,&nbsp;Prasad Subramanian","doi":"10.1007/s11207-025-02457-5","DOIUrl":null,"url":null,"abstract":"<div><p>Solar coronal mass ejections (CMEs) directed at the Earth often drive large geomagnetic storms. Here, we use velocity, magnetic field, and proton density data from 152 CMEs that were sampled in situ at 1 AU by the Wind spacecraft. We Fourier analyze fluctuations of these quantities in the quiescent pre-CME solar wind, sheath, and magnetic cloud. We quantify the extent by which the power in turbulent (magnetic field, velocity, and density) fluctuations in the sheath exceeds that in the solar wind background and in the magnetic cloud. For instance, the mean value of the power per unit volume in magnetic field fluctuations in the sheath is 76.7 times that in the solar wind background, while the mean value of the power per unit mass in velocity fluctuations in the sheath is 9 times that in the magnetic cloud. Our detailed results show that the turbulent fluctuation power is a useful discriminator between the ambient solar wind background, sheaths, and magnetic clouds and can serve as an input for space weather prediction.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02457-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar coronal mass ejections (CMEs) directed at the Earth often drive large geomagnetic storms. Here, we use velocity, magnetic field, and proton density data from 152 CMEs that were sampled in situ at 1 AU by the Wind spacecraft. We Fourier analyze fluctuations of these quantities in the quiescent pre-CME solar wind, sheath, and magnetic cloud. We quantify the extent by which the power in turbulent (magnetic field, velocity, and density) fluctuations in the sheath exceeds that in the solar wind background and in the magnetic cloud. For instance, the mean value of the power per unit volume in magnetic field fluctuations in the sheath is 76.7 times that in the solar wind background, while the mean value of the power per unit mass in velocity fluctuations in the sheath is 9 times that in the magnetic cloud. Our detailed results show that the turbulent fluctuation power is a useful discriminator between the ambient solar wind background, sheaths, and magnetic clouds and can serve as an input for space weather prediction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信