Yuriy T. Tsap, Alexander V. Stepanov, Yulia G. Kopylova
{"title":"Coronal Electric Currents and Kink Instability of Magnetic Flux Rope","authors":"Yuriy T. Tsap, Alexander V. Stepanov, Yulia G. Kopylova","doi":"10.1007/s11207-025-02461-9","DOIUrl":null,"url":null,"abstract":"<div><p>Using the energy method and the thin magnetic flux tube approximation, we find the wave dispersion relation for magnetohydrodynamic kink oscillations of a force-free magnetic flux rope with uncompensated longitudinal electric current under solar coronal conditions. The eigenvectors are shown to impose restrictions on the conditions of the kink instability of a flux rope. The observed weak twist of coronal loops with a small (<span>\\(\\lesssim 1\\)</span>) number of turns of the magnetic field lines around the axis indicates the dominance of unshielded magnetic flux ropes in the corona of the Sun, in which the longitudinal electric currents do not exceed <span>\\(10^{11}\\)</span> – <span>\\(10^{12}\\)</span> A. These restrictions can be associated with the absence of solar superflares. The period of kink oscillations of twisted coronal loops should decrease with decreasing longitudinal electric current, which can be used to study its dynamics in solar flares. No dependence of compact and eruptive solar flares on the twist of flux ropes can be explained by the coexistence of both shielded and unshielded electric currents in the corona.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02461-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using the energy method and the thin magnetic flux tube approximation, we find the wave dispersion relation for magnetohydrodynamic kink oscillations of a force-free magnetic flux rope with uncompensated longitudinal electric current under solar coronal conditions. The eigenvectors are shown to impose restrictions on the conditions of the kink instability of a flux rope. The observed weak twist of coronal loops with a small (\(\lesssim 1\)) number of turns of the magnetic field lines around the axis indicates the dominance of unshielded magnetic flux ropes in the corona of the Sun, in which the longitudinal electric currents do not exceed \(10^{11}\) – \(10^{12}\) A. These restrictions can be associated with the absence of solar superflares. The period of kink oscillations of twisted coronal loops should decrease with decreasing longitudinal electric current, which can be used to study its dynamics in solar flares. No dependence of compact and eruptive solar flares on the twist of flux ropes can be explained by the coexistence of both shielded and unshielded electric currents in the corona.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.