Notable peak voltage and sensitivity as well as optical-communication of the inclined Bi2Sr2CuOy thin film with different wavelength lasers

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xianwu Tang, Yanchao Zhang, Ming Liu, Yuxuan Jiang, Xueyao Lu, Gangyi Zhu, Yongjin Wang, Xuebin Zhu
{"title":"Notable peak voltage and sensitivity as well as optical-communication of the inclined Bi2Sr2CuOy thin film with different wavelength lasers","authors":"Xianwu Tang,&nbsp;Yanchao Zhang,&nbsp;Ming Liu,&nbsp;Yuxuan Jiang,&nbsp;Xueyao Lu,&nbsp;Gangyi Zhu,&nbsp;Yongjin Wang,&nbsp;Xuebin Zhu","doi":"10.1007/s00339-025-08484-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the laser-induced thermoelectric voltage (LITV) of the solution-deposited inclined Bi<sub>2</sub>Sr<sub>2</sub>CuO<sub>y</sub> (BSCO) thin films with different wavelength semiconductor lasers was investigated. Microstructure results indicate the BSCO thin film inclined growth along the substrate with the same angle. Obvious LITV keeps a linear increase with the increased power density for each wavelength laser. The peak voltage is over 40 mV at the power density of 40 mW/cm<sup>2</sup>. It is slightly different with the laser wavelength, caused by the difference in optical absorption and light penetration depth. The sensitivity is higher than 0.8 and increases to 1.15 V·cm<sup>2</sup>/W with the laser changes from green to ultraviolet. Furthermore, based on the LITV effect of the BSCO thin film, the carry information can be transmitted and decoded correctly via the optical communications system composed of the light diode laser. All these results demonstrate the potential application and favorable properties of the inclined BSCO thin films in broad-spectrum response of photodetection.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08484-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the laser-induced thermoelectric voltage (LITV) of the solution-deposited inclined Bi2Sr2CuOy (BSCO) thin films with different wavelength semiconductor lasers was investigated. Microstructure results indicate the BSCO thin film inclined growth along the substrate with the same angle. Obvious LITV keeps a linear increase with the increased power density for each wavelength laser. The peak voltage is over 40 mV at the power density of 40 mW/cm2. It is slightly different with the laser wavelength, caused by the difference in optical absorption and light penetration depth. The sensitivity is higher than 0.8 and increases to 1.15 V·cm2/W with the laser changes from green to ultraviolet. Furthermore, based on the LITV effect of the BSCO thin film, the carry information can be transmitted and decoded correctly via the optical communications system composed of the light diode laser. All these results demonstrate the potential application and favorable properties of the inclined BSCO thin films in broad-spectrum response of photodetection.

倾斜 Bi2Sr2CuOy 薄膜与不同波长激光器的显著峰值电压、灵敏度和光通信性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信