Luminescent down-shifting layers based on an isoquinoline-Eu(iii) complex for enhanced efficiency of c-Si solar cells under extreme UV radiation conditions†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-04-03 DOI:10.1039/D5RA00584A
Darío Espinoza, Ronald Nelson, Fabian Vargas, Alifhers Mestra, Laura Sánchez-Muñoz, Pere Alemany, Douglas Olivares, Luis Conde and Jaime Llanos
{"title":"Luminescent down-shifting layers based on an isoquinoline-Eu(iii) complex for enhanced efficiency of c-Si solar cells under extreme UV radiation conditions†","authors":"Darío Espinoza, Ronald Nelson, Fabian Vargas, Alifhers Mestra, Laura Sánchez-Muñoz, Pere Alemany, Douglas Olivares, Luis Conde and Jaime Llanos","doi":"10.1039/D5RA00584A","DOIUrl":null,"url":null,"abstract":"<p >The Atacama Desert's extreme UV radiation impacts photovoltaic devices, reducing silicon solar cell efficiency through overheating and photodegradation. To address this, we integrated a europium complex derived from 1-(diphenylphosphoryl)-3-isoquinolinecarboxylic acid into a polyvinyl butyral (PVB) matrix, forming a luminescent down-shifting layer (LDSL) that converts UV radiation into visible light. This LDSL improves light harvesting and mitigates UV-induced degradation. After LDSL application, photovoltaic analysis of a c-Si cell showed significant enhancements: short-circuit current density (<em>J</em><small><sub>sc</sub></small>) increased from 28.82 to 34.69 mA cm<small><sup>−2</sup></small>, open-circuit voltage (<em>V</em><small><sub>oc</sub></small>) rose from 630.6 to 635.7 mV, and the fill factor (FF) remained stable. Incident photon-to-current efficiency (IPCE) curves indicated better performance, particularly in the UVA range, with overall cell efficiency improving from 14.10% to 16.62% at higher Eu complex concentrations. Electrochemical impedance spectroscopy (EIS) revealed that the Eu complex improved charge transfer, reducing recombination losses. This approach demonstrates significant potential for enhancing solar cell performance in high-irradiance environments like the Atacama Desert.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 13","pages":" 10257-10264"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00584a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00584a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Atacama Desert's extreme UV radiation impacts photovoltaic devices, reducing silicon solar cell efficiency through overheating and photodegradation. To address this, we integrated a europium complex derived from 1-(diphenylphosphoryl)-3-isoquinolinecarboxylic acid into a polyvinyl butyral (PVB) matrix, forming a luminescent down-shifting layer (LDSL) that converts UV radiation into visible light. This LDSL improves light harvesting and mitigates UV-induced degradation. After LDSL application, photovoltaic analysis of a c-Si cell showed significant enhancements: short-circuit current density (Jsc) increased from 28.82 to 34.69 mA cm−2, open-circuit voltage (Voc) rose from 630.6 to 635.7 mV, and the fill factor (FF) remained stable. Incident photon-to-current efficiency (IPCE) curves indicated better performance, particularly in the UVA range, with overall cell efficiency improving from 14.10% to 16.62% at higher Eu complex concentrations. Electrochemical impedance spectroscopy (EIS) revealed that the Eu complex improved charge transfer, reducing recombination losses. This approach demonstrates significant potential for enhancing solar cell performance in high-irradiance environments like the Atacama Desert.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信