Application of mobile-macroscale scanning X-ray fluorescence (mobile-MA-XRF) imaging in paleontology: analyses of vertebrate fossil specimens from Messel conserved in different solid and liquid media†

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL
Marco Colombo, Thomas Lehmann, Wolfgang Ensinger and Valentina Rossi
{"title":"Application of mobile-macroscale scanning X-ray fluorescence (mobile-MA-XRF) imaging in paleontology: analyses of vertebrate fossil specimens from Messel conserved in different solid and liquid media†","authors":"Marco Colombo, Thomas Lehmann, Wolfgang Ensinger and Valentina Rossi","doi":"10.1039/D4JA00310A","DOIUrl":null,"url":null,"abstract":"<p >Cutting-edge analytical instrumentation is increasingly being developed and applied to the analysis of fossils. X-ray fluorescence (XRF) imaging spectroscopy is a powerful tool to resolve the elemental chemistry of fossil specimens. Most of the XRF application to study fossils is carried out at dedicated synchrotron radiation XRF beamlines. Recent studies used laboratory scanners, <em>i.e.</em> stationary instruments with a measurement chamber or mobile ones to tackle paleontological questions. The application of these new XRF systems on fossils is still relatively limited and clear protocols for the acquisition and processing of the XRF data are currently lacking. Here, we present the use of mobile-macroscale scanning XRF (mobile-MA-XRF) imaging for the <em>in situ</em> analyses of the elemental chemistry of fossil vertebrates from the Messel biota (∼48 Ma, Eocene), including amphibians, reptiles, mammals and birds. We investigate the usefulness of mobile-MA-XRF to detect tissue-specific elemental signatures in fossils preserved in solid resin, liquid glycerin and water. We found remarkable tissue-specific chemical signatures preserved in almost all specimens analyzed. Hair and feathers are associated with S and Ti, abdominal tissues with Cu and Zn and stomach contents, <em>e.g.</em>, seeds, are associated with Ni, Cu, and Zn. We provide a detailed protocol for acquisition and processing of MA-XRF data and a critical discussion of the application of this approach to paleontological research. Our work sets the foundation for applying MA-XRF to the analyses of those fossils that cannot be measured at synchrotron facilities and/or with stationary laboratory scanners due to their dimensions, weights and conservation mode.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 4","pages":" 989-1005"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ja/d4ja00310a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ja/d4ja00310a","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cutting-edge analytical instrumentation is increasingly being developed and applied to the analysis of fossils. X-ray fluorescence (XRF) imaging spectroscopy is a powerful tool to resolve the elemental chemistry of fossil specimens. Most of the XRF application to study fossils is carried out at dedicated synchrotron radiation XRF beamlines. Recent studies used laboratory scanners, i.e. stationary instruments with a measurement chamber or mobile ones to tackle paleontological questions. The application of these new XRF systems on fossils is still relatively limited and clear protocols for the acquisition and processing of the XRF data are currently lacking. Here, we present the use of mobile-macroscale scanning XRF (mobile-MA-XRF) imaging for the in situ analyses of the elemental chemistry of fossil vertebrates from the Messel biota (∼48 Ma, Eocene), including amphibians, reptiles, mammals and birds. We investigate the usefulness of mobile-MA-XRF to detect tissue-specific elemental signatures in fossils preserved in solid resin, liquid glycerin and water. We found remarkable tissue-specific chemical signatures preserved in almost all specimens analyzed. Hair and feathers are associated with S and Ti, abdominal tissues with Cu and Zn and stomach contents, e.g., seeds, are associated with Ni, Cu, and Zn. We provide a detailed protocol for acquisition and processing of MA-XRF data and a critical discussion of the application of this approach to paleontological research. Our work sets the foundation for applying MA-XRF to the analyses of those fossils that cannot be measured at synchrotron facilities and/or with stationary laboratory scanners due to their dimensions, weights and conservation mode.

Abstract Image

在古生物学中应用移动宏观扫描 X 射线荧光(mobile-MA-XRF)成像技术:对保存在不同固体和液体介质中的梅塞尔脊椎动物化石标本进行分析†。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信