Chemical bio-manufacture from diverse C-rich waste polymeric feedstocks using engineered microorganisms

Maria Franca Pitzalis and Joanna C. Sadler
{"title":"Chemical bio-manufacture from diverse C-rich waste polymeric feedstocks using engineered microorganisms","authors":"Maria Franca Pitzalis and Joanna C. Sadler","doi":"10.1039/D5SU00013K","DOIUrl":null,"url":null,"abstract":"<p >Sustainability targets are driving the chemicals industry away from reliance upon finite fossil fuel resources for chemical synthesis. Biotechnology holds huge promise in this area and methods to convert renewable feedstocks, such as glucose, into a myriad of value-added chemicals are well-known. Metabolic engineering and synthetic biology have been transformational in enabling microbial cells to perform non-native chemistry, increasing product yields and the scope of chemical space accessible through bio-based approaches. While the development of the bioeconomy using virgin renewable feedstocks (<em>e.g.</em>, glucose) has been a significant milestone, we propose that the next major breakthrough towards a sustainable future lies in utilizing waste feedstocks through engineered microbes. In particular, C-rich polymeric materials such as lignocellulosic and plastic waste hold vast untapped potential for the circular bioeconomy. This mitigates land-use conflicts with the food industry and aligns with principles of the circular economy. This Perspective highlights progress and challenges in this emerging field of using biotic and abiotic polymers as a feedstock for chemical biomanufacture.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 4","pages":" 1672-1684"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d5su00013k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d5su00013k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainability targets are driving the chemicals industry away from reliance upon finite fossil fuel resources for chemical synthesis. Biotechnology holds huge promise in this area and methods to convert renewable feedstocks, such as glucose, into a myriad of value-added chemicals are well-known. Metabolic engineering and synthetic biology have been transformational in enabling microbial cells to perform non-native chemistry, increasing product yields and the scope of chemical space accessible through bio-based approaches. While the development of the bioeconomy using virgin renewable feedstocks (e.g., glucose) has been a significant milestone, we propose that the next major breakthrough towards a sustainable future lies in utilizing waste feedstocks through engineered microbes. In particular, C-rich polymeric materials such as lignocellulosic and plastic waste hold vast untapped potential for the circular bioeconomy. This mitigates land-use conflicts with the food industry and aligns with principles of the circular economy. This Perspective highlights progress and challenges in this emerging field of using biotic and abiotic polymers as a feedstock for chemical biomanufacture.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信