Critical metal recovery from e-waste in concentrated ionic media using ultrasound†

Christopher E. Elgar, Kelsey Hall and Andrew P. Abbott
{"title":"Critical metal recovery from e-waste in concentrated ionic media using ultrasound†","authors":"Christopher E. Elgar, Kelsey Hall and Andrew P. Abbott","doi":"10.1039/D4SU00715H","DOIUrl":null,"url":null,"abstract":"<p >With an increase in the amount of e-waste being generated worldwide, there is greater demand for sustainable recycling techniques to recover components and technology critical metals (TCMs) that would otherwise be discarded. Current methods for solder removal are inefficient, produce harmful gases and by-products. This work aims to use catalytic etchants in concentrated ionic media, to improve the sustainability of recycling techniques. The viscosity of these solutions is often perceived as a limiting factor for ion mobility, so ultrasonic agitation has been used to improve mass transport. Cyclic voltammetry and linear sweep voltammetry have been used to investigate the redox behaviour of tin and lead in solder, and how ultrasound can overcome passivation and improve the dissolution of these metals. Ultrasound results in a linear response between the slope of the LSV and solution conductivity for tin, suggesting a migration-controlled mechanism, however passivation still occurred with lead, showing that there is still some diffusion control. A waste printed circuit board was etched using FeCl<small><sub>3</sub></small> catalyst in a choline chloride and ethylene glycol DES (ChCl : 2EG) but no major components were removed after 30 minutes of sonication at room temperature. The use of a choline chloride and water in a 1 : 10 molar ratio removed most of the components, along with some gold coating, under the same conditions. The additional water content in the brine improved the fluidity of the solution, enabling dissolution of the solder and copper under-layer, freeing the gold. Cavitation effects including acoustic streaming and jetting work in tandem to aid metal removal.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 4","pages":" 1957-1965"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00715h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00715h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With an increase in the amount of e-waste being generated worldwide, there is greater demand for sustainable recycling techniques to recover components and technology critical metals (TCMs) that would otherwise be discarded. Current methods for solder removal are inefficient, produce harmful gases and by-products. This work aims to use catalytic etchants in concentrated ionic media, to improve the sustainability of recycling techniques. The viscosity of these solutions is often perceived as a limiting factor for ion mobility, so ultrasonic agitation has been used to improve mass transport. Cyclic voltammetry and linear sweep voltammetry have been used to investigate the redox behaviour of tin and lead in solder, and how ultrasound can overcome passivation and improve the dissolution of these metals. Ultrasound results in a linear response between the slope of the LSV and solution conductivity for tin, suggesting a migration-controlled mechanism, however passivation still occurred with lead, showing that there is still some diffusion control. A waste printed circuit board was etched using FeCl3 catalyst in a choline chloride and ethylene glycol DES (ChCl : 2EG) but no major components were removed after 30 minutes of sonication at room temperature. The use of a choline chloride and water in a 1 : 10 molar ratio removed most of the components, along with some gold coating, under the same conditions. The additional water content in the brine improved the fluidity of the solution, enabling dissolution of the solder and copper under-layer, freeing the gold. Cavitation effects including acoustic streaming and jetting work in tandem to aid metal removal.

Abstract Image

利用超声波从浓缩离子介质中的电子垃圾中回收关键金属
随着全球电子垃圾数量的增加,对可持续回收技术的需求越来越大,以回收原本会被丢弃的组件和技术关键金属(tcm)。目前的除焊方法效率低,产生有害气体和副产品。这项工作的目的是在浓离子介质中使用催化蚀刻剂,以提高回收技术的可持续性。这些溶液的粘度通常被认为是离子迁移的限制因素,因此超声波搅拌已被用于改善质量传输。循环伏安法和线性扫描伏安法已经被用来研究锡和铅在焊料中的氧化还原行为,以及超声波如何克服钝化和改善这些金属的溶解。超声结果表明,锡溶液电导率与LSV斜率呈线性关系,表明锡溶液电导率受迁移控制,但铅溶液仍发生钝化,表明锡溶液电导率仍受扩散控制。用FeCl3催化剂在氯化胆碱和乙二醇DES (ChCl: 2EG)中蚀刻废弃印刷电路板,室温超声30分钟后未去除主要成分。在相同的条件下,氯化胆碱和水以1:10的摩尔比去除大部分成分,以及一些金涂层。盐水中额外的水含量提高了溶液的流动性,使焊料和底层铜溶解,释放出金。空化效应包括声流和射流协同工作,以帮助金属去除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信