MFSonar: Multiscale Frequency-Domain Contextual Denoising for Forward-Looking Sonar Image Semantic Segmentation

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiayuan Li;Zhen Wang;ShenAo Yuan;Zhu-Hong You
{"title":"MFSonar: Multiscale Frequency-Domain Contextual Denoising for Forward-Looking Sonar Image Semantic Segmentation","authors":"Jiayuan Li;Zhen Wang;ShenAo Yuan;Zhu-Hong You","doi":"10.1109/JSEN.2025.3545146","DOIUrl":null,"url":null,"abstract":"Semantic segmentation of forward-looking sonar (FLS) images is crucial for enhancing situational awareness in marine environments. However, FLS images are often degraded by environmental noise, similarity noise, and shading effects, which result in low resolution, poor signal-to-noise ratio, and suboptimal image quality. These issues significantly hinder the accuracy of semantic segmentation in FLS images. To address these challenges, we propose a novel method called MFSonar, which is based on the Transformer-Mamba architecture. MFSonar incorporates a context channel denoising module (CCDM) that exploits the similarity characteristics of local and global features to effectively suppress similarity noise and enhance target features. Additionally, the Multiscale Frequency-Domain Decoding Module integrates multiscale frequency-domain convolution with visual state-space (VSS) blocks, leveraging frequency-domain characteristics to mitigate environmental noise and occlusion shadows. Furthermore, our approach prioritizes local features before global features to achieve effective fusion and enhancement of global semantic features and multiscale local visual information. Extensive comparative experiments across multiple datasets demonstrate that MFSonar achieves state-of-the-art performance. Moreover, ablation studies and visual comparisons on a primary dataset validate the superiority, effectiveness, and uniqueness of our approach. Our implementation is available at <uri>https://github.com/NWPUFranklee/PVSonar.git</uri>.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 7","pages":"11792-11808"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10909158/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic segmentation of forward-looking sonar (FLS) images is crucial for enhancing situational awareness in marine environments. However, FLS images are often degraded by environmental noise, similarity noise, and shading effects, which result in low resolution, poor signal-to-noise ratio, and suboptimal image quality. These issues significantly hinder the accuracy of semantic segmentation in FLS images. To address these challenges, we propose a novel method called MFSonar, which is based on the Transformer-Mamba architecture. MFSonar incorporates a context channel denoising module (CCDM) that exploits the similarity characteristics of local and global features to effectively suppress similarity noise and enhance target features. Additionally, the Multiscale Frequency-Domain Decoding Module integrates multiscale frequency-domain convolution with visual state-space (VSS) blocks, leveraging frequency-domain characteristics to mitigate environmental noise and occlusion shadows. Furthermore, our approach prioritizes local features before global features to achieve effective fusion and enhancement of global semantic features and multiscale local visual information. Extensive comparative experiments across multiple datasets demonstrate that MFSonar achieves state-of-the-art performance. Moreover, ablation studies and visual comparisons on a primary dataset validate the superiority, effectiveness, and uniqueness of our approach. Our implementation is available at https://github.com/NWPUFranklee/PVSonar.git.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信