ClusVPR: Efficient Visual Place Recognition With Clustering-Based Weighted Transformer

Yifan Xu;Pourya Shamsolmoali;Masoume Zareapoor;Jie Yang
{"title":"ClusVPR: Efficient Visual Place Recognition With Clustering-Based Weighted Transformer","authors":"Yifan Xu;Pourya Shamsolmoali;Masoume Zareapoor;Jie Yang","doi":"10.1109/TAI.2024.3510479","DOIUrl":null,"url":null,"abstract":"Visual place recognition (VPR) is a highly challenging task that has a wide range of applications, including robot navigation and self-driving vehicles. VPR is a difficult task due to duplicate regions and insufficient attention to small objects in complex scenes, resulting in recognition deviations. In this article, we present ClusVPR, a novel approach that tackles the specific issues of redundant information in duplicate regions and representations of small objects. Different from existing methods that rely on convolutional neural networks (CNNs) for feature map generation, ClusVPR introduces a unique paradigm called clustering-based weighted transformer network (CWTNet). CWTNet uses the power of clustering-based weighted feature maps and integrates global dependencies to effectively address visual deviations encountered in large-scale VPR problems. We also introduce the optimized-VLAD (OptLAD) layer, which significantly reduces the number of parameters and enhances model efficiency. This layer is specifically designed to aggregate the information obtained from scale-wise image patches. Additionally, our pyramid self-supervised strategy focuses on extracting representative and diverse features from scale-wise image patches rather than from entire images. This approach is essential for capturing a broader range of information required for robust VPR. Extensive experiments on four VPR datasets show our model's superior performance compared to existing models while being less complex.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 4","pages":"1038-1049"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772618/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual place recognition (VPR) is a highly challenging task that has a wide range of applications, including robot navigation and self-driving vehicles. VPR is a difficult task due to duplicate regions and insufficient attention to small objects in complex scenes, resulting in recognition deviations. In this article, we present ClusVPR, a novel approach that tackles the specific issues of redundant information in duplicate regions and representations of small objects. Different from existing methods that rely on convolutional neural networks (CNNs) for feature map generation, ClusVPR introduces a unique paradigm called clustering-based weighted transformer network (CWTNet). CWTNet uses the power of clustering-based weighted feature maps and integrates global dependencies to effectively address visual deviations encountered in large-scale VPR problems. We also introduce the optimized-VLAD (OptLAD) layer, which significantly reduces the number of parameters and enhances model efficiency. This layer is specifically designed to aggregate the information obtained from scale-wise image patches. Additionally, our pyramid self-supervised strategy focuses on extracting representative and diverse features from scale-wise image patches rather than from entire images. This approach is essential for capturing a broader range of information required for robust VPR. Extensive experiments on four VPR datasets show our model's superior performance compared to existing models while being less complex.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信