PSO-Based Optimal Coverage Path Planning for Surface Defect Inspection of 3C Components With a Robotic Line Scanner

IF 5.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongpeng Chen;Shengzeng Huo;Muhammad Muddassir;Hoi-Yin Lee;Yuli Liu;Junxi Li;Anqing Duan;Pai Zheng;David Navarro-Alarcon
{"title":"PSO-Based Optimal Coverage Path Planning for Surface Defect Inspection of 3C Components With a Robotic Line Scanner","authors":"Hongpeng Chen;Shengzeng Huo;Muhammad Muddassir;Hoi-Yin Lee;Yuli Liu;Junxi Li;Anqing Duan;Pai Zheng;David Navarro-Alarcon","doi":"10.1109/TIM.2025.3552466","DOIUrl":null,"url":null,"abstract":"The automatic inspection of surface defects is an essential task for quality control in the computers, communications, and consumer (3C) electronics industry. Traditional inspection mechanisms (i.e., line-scan sensors) have a limited field of view (FOV), thus prompting the necessity for a multifaceted robotic inspection system capable of comprehensive scanning. Optimally selecting the robot’s viewpoints and planning a path is regarded as coverage path planning (CPP), a problem that enables inspecting the object’s complete surface while reducing the scanning time and avoiding misdetection of defects. In this article, we present a new approach for robotic line scanners to detect surface defects of 3C free-form objects automatically. A two-stage region segmentation method defines the local scanning based on the random sample consensus (RANSAC) and K-means clustering to improve the inspection coverage. The proposed method also consists of an adaptive region-of-interest (ROI) algorithm to define the local scanning paths. Besides, a particle swarm optimization (PSO)-based method is used for global inspection path generation to minimize the inspection time. The developed method is validated by simulation-based and experimental studies on various free-form workpieces, and its performance is compared with that of two state-of-the-art solutions. The reported results demonstrate the feasibility and effectiveness of our proposed method.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-12"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10931035/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The automatic inspection of surface defects is an essential task for quality control in the computers, communications, and consumer (3C) electronics industry. Traditional inspection mechanisms (i.e., line-scan sensors) have a limited field of view (FOV), thus prompting the necessity for a multifaceted robotic inspection system capable of comprehensive scanning. Optimally selecting the robot’s viewpoints and planning a path is regarded as coverage path planning (CPP), a problem that enables inspecting the object’s complete surface while reducing the scanning time and avoiding misdetection of defects. In this article, we present a new approach for robotic line scanners to detect surface defects of 3C free-form objects automatically. A two-stage region segmentation method defines the local scanning based on the random sample consensus (RANSAC) and K-means clustering to improve the inspection coverage. The proposed method also consists of an adaptive region-of-interest (ROI) algorithm to define the local scanning paths. Besides, a particle swarm optimization (PSO)-based method is used for global inspection path generation to minimize the inspection time. The developed method is validated by simulation-based and experimental studies on various free-form workpieces, and its performance is compared with that of two state-of-the-art solutions. The reported results demonstrate the feasibility and effectiveness of our proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信