Progressively Prompt-Guided Models for Sparse-View CT Reconstruction

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Jiajun Li;Wenchao Du;Huanhuan Cui;Hu Chen;Yi Zhang;Hongyu Yang
{"title":"Progressively Prompt-Guided Models for Sparse-View CT Reconstruction","authors":"Jiajun Li;Wenchao Du;Huanhuan Cui;Hu Chen;Yi Zhang;Hongyu Yang","doi":"10.1109/TRPMS.2024.3512172","DOIUrl":null,"url":null,"abstract":"While sparse-view computed tomography (CT) remarkably reduces the ionizing radiation dose, the reconstructed images have been compromised by streak-like artifacts, affecting clinical diagnostics. The deep unrolled methods have achieved promising results by integrating powerful regularization terms with deep learning technologies into iterative reconstruction algorithms. However, leading works focus on designing powerful regularization term to capture image and noise priors, which always requires carefully designed blocks, and leads to heavy computational burden while bringing over-smoothness into results. In this article, we integrate the idea of prompt learning into the general regularization terms, and propose a progressively prompt-guided model (shorted by PPM) to alleviate above problems. More specifically, we inject a prompting module into each unrolled block to perceive more native priors in a self-adaptive manner, which would capture more effective image and noise priors to guide high-quality CT reconstruction. Furthermore, we propose a progressively guiding strategy to facilitate high-quality prompt generation while speeding model convergence. Extensive experiments on multiple sparse-view CT reconstruction benchmarks demonstrate that our PPM achieves state-of-the-art performance in terms of artifact reduction and structure preservation while with fewer parameters and higher-inference efficiency.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 4","pages":"447-459"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778259","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10778259/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

While sparse-view computed tomography (CT) remarkably reduces the ionizing radiation dose, the reconstructed images have been compromised by streak-like artifacts, affecting clinical diagnostics. The deep unrolled methods have achieved promising results by integrating powerful regularization terms with deep learning technologies into iterative reconstruction algorithms. However, leading works focus on designing powerful regularization term to capture image and noise priors, which always requires carefully designed blocks, and leads to heavy computational burden while bringing over-smoothness into results. In this article, we integrate the idea of prompt learning into the general regularization terms, and propose a progressively prompt-guided model (shorted by PPM) to alleviate above problems. More specifically, we inject a prompting module into each unrolled block to perceive more native priors in a self-adaptive manner, which would capture more effective image and noise priors to guide high-quality CT reconstruction. Furthermore, we propose a progressively guiding strategy to facilitate high-quality prompt generation while speeding model convergence. Extensive experiments on multiple sparse-view CT reconstruction benchmarks demonstrate that our PPM achieves state-of-the-art performance in terms of artifact reduction and structure preservation while with fewer parameters and higher-inference efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信