Momentum-Based Iterative Hard Thresholding Algorithm for Sparse Signal Recovery

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wen Jin;Lie-Jun Xie
{"title":"Momentum-Based Iterative Hard Thresholding Algorithm for Sparse Signal Recovery","authors":"Wen Jin;Lie-Jun Xie","doi":"10.1109/LSP.2025.3550768","DOIUrl":null,"url":null,"abstract":"The iterative hard thresholding (IHT) algorithm is widely used for recovering sparse signals in compressed sensing. Despite the development of numerous variants of this effective algorithm, its convergence rate and accuracy in finding the optimal solution still have room for enhancement. Aiming at this issue, we propose a momentum-based iterative hard thresholding (MIHT) algorithm by introducing a new iterative search direction derived from the momentum method, which uses historical iteration information to refine the search direction and thereby accelerate convergence. We establish a sufficient condition, in terms of <inline-formula><tex-math>$ (3s)$</tex-math></inline-formula>-order restricted isometry constant, to guarantee the convergence of MIHT. Excitingly, numerical experiments demonstrate that MIHT possesses an excellent recovery success rate and outperforms a wide range of existing IHT variants.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1346-1350"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10923699/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The iterative hard thresholding (IHT) algorithm is widely used for recovering sparse signals in compressed sensing. Despite the development of numerous variants of this effective algorithm, its convergence rate and accuracy in finding the optimal solution still have room for enhancement. Aiming at this issue, we propose a momentum-based iterative hard thresholding (MIHT) algorithm by introducing a new iterative search direction derived from the momentum method, which uses historical iteration information to refine the search direction and thereby accelerate convergence. We establish a sufficient condition, in terms of $ (3s)$-order restricted isometry constant, to guarantee the convergence of MIHT. Excitingly, numerical experiments demonstrate that MIHT possesses an excellent recovery success rate and outperforms a wide range of existing IHT variants.
基于动量的稀疏信号恢复迭代硬阈值算法
迭代硬阈值(IHT)算法在压缩感知中被广泛用于稀疏信号的恢复。尽管这种有效的算法已经发展出了许多变体,但其收敛速度和寻找最优解的精度仍有提高的空间。针对这一问题,我们提出了一种基于动量的迭代硬阈值(MIHT)算法,该算法在动量方法的基础上引入了一种新的迭代搜索方向,利用历史迭代信息来细化搜索方向,从而加快收敛速度。利用$ (3s)$阶限制等距常数,给出了保证MIHT收敛的充分条件。令人兴奋的是,数值实验表明,MIHT具有优异的恢复成功率,并且优于现有的多种IHT变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信