{"title":"On proper hamiltonicity and proper (even) pancyclicity of arc-colored complete (balanced bipartite) digraphs","authors":"Mengyu Duan , Zhiwei Guo , Binlong Li , Shenggui Zhang","doi":"10.1016/j.disc.2025.114507","DOIUrl":null,"url":null,"abstract":"<div><div>A subdigraph of an arc-colored digraph is called properly colored if its every pair of consecutive arcs have distinct colors. We call an arc-colored digraph <em>D</em> properly hamiltonian if it contains a properly colored Hamilton cycle, and properly (even) pancyclic if it contains a properly colored cycle of length <em>k</em> for every (even) <em>k</em> with <span><math><mn>2</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>D</mi><mo>)</mo><mo>|</mo></math></span>. In this paper, we first obtain some color number conditions for the existence of properly colored Hamilton cycles of arc-colored complete (balanced bipartite) digraphs, and further prove that the these conditions can still guarantee the (even) pancyclicity of arc-colored complete (balanced bipartite) digraphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114507"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001153","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A subdigraph of an arc-colored digraph is called properly colored if its every pair of consecutive arcs have distinct colors. We call an arc-colored digraph D properly hamiltonian if it contains a properly colored Hamilton cycle, and properly (even) pancyclic if it contains a properly colored cycle of length k for every (even) k with . In this paper, we first obtain some color number conditions for the existence of properly colored Hamilton cycles of arc-colored complete (balanced bipartite) digraphs, and further prove that the these conditions can still guarantee the (even) pancyclicity of arc-colored complete (balanced bipartite) digraphs.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.