Model structure from one hereditary complete cotorsion pair

IF 0.7 2区 数学 Q2 MATHEMATICS
Jian Cui, Xue-Song Lu, Pu Zhang
{"title":"Model structure from one hereditary complete cotorsion pair","authors":"Jian Cui,&nbsp;Xue-Song Lu,&nbsp;Pu Zhang","doi":"10.1016/j.jpaa.2025.107958","DOIUrl":null,"url":null,"abstract":"<div><div>In contrast with the Hovey correspondence of abelian model structures from two complete cotorsion pairs, Beligiannis and Reiten give a construction of model structures on abelian categories from one hereditary complete cotorsion pair. The aim of this paper is to extend this result to weakly idempotent complete exact categories, by adding the condition of heredity of the complete cotorsion pair. In fact, even for abelian categories, this condition of heredity should be added. This construction really gives model structures which are not necessarily exact in the sense of Gillespie. The correspondence of Beligiannis and Reiten of weakly projective model structures also holds for weakly idempotent complete exact categories.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107958"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000970","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In contrast with the Hovey correspondence of abelian model structures from two complete cotorsion pairs, Beligiannis and Reiten give a construction of model structures on abelian categories from one hereditary complete cotorsion pair. The aim of this paper is to extend this result to weakly idempotent complete exact categories, by adding the condition of heredity of the complete cotorsion pair. In fact, even for abelian categories, this condition of heredity should be added. This construction really gives model structures which are not necessarily exact in the sense of Gillespie. The correspondence of Beligiannis and Reiten of weakly projective model structures also holds for weakly idempotent complete exact categories.
一个遗传完全扭转对的模型结构
与来自两个完全扭转对的阿贝尔模型结构的Hovey对应性不同,Beligiannis和Reiten给出了来自一个遗传完全扭转对的阿贝尔范畴的模型结构构造。通过增加完全扭转对的遗传条件,将这一结果推广到弱幂等完备精确范畴。事实上,即使对于阿贝尔范畴,也应该加上这个遗传条件。这种构造给出的模型结构并不一定是吉莱斯皮意义上的精确模型。弱射影模型结构的Beligiannis和Reiten的对应也适用于弱幂等完备精确范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信