Long He , Qianying Lv , Jing Luo , Yi-De Guo , He Sun , Ming Zong , Lie-Ying Fan
{"title":"Heparanase inhibition mitigates bleomycin-induced pulmonary fibrosis in mice by reducing M2 macrophage polarization","authors":"Long He , Qianying Lv , Jing Luo , Yi-De Guo , He Sun , Ming Zong , Lie-Ying Fan","doi":"10.1016/j.imlet.2025.107006","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study investigates the involvement of heparanase in IPF pathogenesis and evaluates the therapeutic potential of heparanase inhibition.</div></div><div><h3>Methods</h3><div>Plasma heparanase levels were measured in IPF patients and healthy controls. Macrophage infiltration and heparanase expression in bronchoalveolar lavage fluid (BALF) were analyzed using immunofluorescence. Bleomycin (BLM)-induced pulmonary fibrosis mouse models were treated with the heparanase inhibitor OGT2115. Disease severity, macrophage polarization, and heparanase expression were assessed through histological staining, hydroxyproline content measurement, flow cytometry, immunofluorescence, Transmission Electron Microscopy and Western blot analysis.</div></div><div><h3>Results</h3><div>Elevated heparanase levels were found in the plasma of IPF patients and in macrophages from BALF. In BLM-induced mice, heparanase was predominantly expressed in M2 macrophages. OGT2115 treatment significantly reduced mortality, body weight loss, and fibrosis severity. Additionally, OGT2115 decreased M2 macrophage infiltration, attenuated lung fibrosis, and reduced autophagy markers LC3 I/II and P62.</div></div><div><h3>Conclusion</h3><div>Heparanase plays a crucial role in modulating M2 macrophage polarization and the progression of IPF. Targeting heparanase with OGT2115 effectively ameliorates pulmonary fibrosis and represents a promising therapeutic strategy for IPF management.</div></div>","PeriodicalId":13413,"journal":{"name":"Immunology letters","volume":"274 ","pages":"Article 107006"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165247825000380","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
This study investigates the involvement of heparanase in IPF pathogenesis and evaluates the therapeutic potential of heparanase inhibition.
Methods
Plasma heparanase levels were measured in IPF patients and healthy controls. Macrophage infiltration and heparanase expression in bronchoalveolar lavage fluid (BALF) were analyzed using immunofluorescence. Bleomycin (BLM)-induced pulmonary fibrosis mouse models were treated with the heparanase inhibitor OGT2115. Disease severity, macrophage polarization, and heparanase expression were assessed through histological staining, hydroxyproline content measurement, flow cytometry, immunofluorescence, Transmission Electron Microscopy and Western blot analysis.
Results
Elevated heparanase levels were found in the plasma of IPF patients and in macrophages from BALF. In BLM-induced mice, heparanase was predominantly expressed in M2 macrophages. OGT2115 treatment significantly reduced mortality, body weight loss, and fibrosis severity. Additionally, OGT2115 decreased M2 macrophage infiltration, attenuated lung fibrosis, and reduced autophagy markers LC3 I/II and P62.
Conclusion
Heparanase plays a crucial role in modulating M2 macrophage polarization and the progression of IPF. Targeting heparanase with OGT2115 effectively ameliorates pulmonary fibrosis and represents a promising therapeutic strategy for IPF management.
期刊介绍:
Immunology Letters provides a vehicle for the speedy publication of experimental papers, (mini)Reviews and Letters to the Editor addressing all aspects of molecular and cellular immunology. The essential criteria for publication will be clarity, experimental soundness and novelty. Results contradictory to current accepted thinking or ideas divergent from actual dogmas will be considered for publication provided that they are based on solid experimental findings.
Preference will be given to papers of immediate importance to other investigators, either by their experimental data, new ideas or new methodology. Scientific correspondence to the Editor-in-Chief related to the published papers may also be accepted provided that they are short and scientifically relevant to the papers mentioned, in order to provide a continuing forum for discussion.