{"title":"Monitoring large-scale industrial systems for wastewater treatment processes with process noise using data-driven NARX approach","authors":"Wentao Liu , Shaoyuan Li","doi":"10.1016/j.conengprac.2025.106321","DOIUrl":null,"url":null,"abstract":"<div><div>Wastewater treatment processes (WWTPs) are large-scale systems comprising multiple biological reactors, which are essential for preventing water pollution and promoting water reuse. Safety assessment and accurate process monitoring are crucial for maintaining the effluent quality of WWTPs. However, the presence of uncertainties and process noise degrades the performance of fault detection models, posing significant challenges to reliable monitoring. This paper proposes a data-driven fault detection framework for monitoring failures in wastewater treatment processes affected by impulsive noise. The fault detection model employs nonlinear autoregressive with exogenous input (NARX) neural networks to construct the residual generator with the aid of robust continuous mixed <span><math><mi>p</mi></math></span>-norm optimization. Robust continuous mixed <span><math><mi>p</mi></math></span>-norm combines multiple error <span><math><mi>p</mi></math></span>-norms to enhance the cost function with diverse error information, minimizing it to produce adaptive gains that adjust the training gain based on data quality at each step. When impulsive noise occurs, the correction term for parameter estimation approaches zero, enabling the model to achieve greater robustness against impulsive noise compared to existing methods. Additionally, the fault detection model incorporates an adaptive moment estimation-based variable-step algorithm to enhance convergence by adaptively adjusting the learning rate. The proposed method is applied to the benchmark simulation model no. 1, and experimental results demonstrate that it achieves accurate detection rates for monitoring WWTPs.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"161 ","pages":"Article 106321"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096706612500084X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater treatment processes (WWTPs) are large-scale systems comprising multiple biological reactors, which are essential for preventing water pollution and promoting water reuse. Safety assessment and accurate process monitoring are crucial for maintaining the effluent quality of WWTPs. However, the presence of uncertainties and process noise degrades the performance of fault detection models, posing significant challenges to reliable monitoring. This paper proposes a data-driven fault detection framework for monitoring failures in wastewater treatment processes affected by impulsive noise. The fault detection model employs nonlinear autoregressive with exogenous input (NARX) neural networks to construct the residual generator with the aid of robust continuous mixed -norm optimization. Robust continuous mixed -norm combines multiple error -norms to enhance the cost function with diverse error information, minimizing it to produce adaptive gains that adjust the training gain based on data quality at each step. When impulsive noise occurs, the correction term for parameter estimation approaches zero, enabling the model to achieve greater robustness against impulsive noise compared to existing methods. Additionally, the fault detection model incorporates an adaptive moment estimation-based variable-step algorithm to enhance convergence by adaptively adjusting the learning rate. The proposed method is applied to the benchmark simulation model no. 1, and experimental results demonstrate that it achieves accurate detection rates for monitoring WWTPs.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.