Fatima Zohra Bengrine , Ana Primo , Giovanni Siclari
{"title":"Existence and non-existence results for parabolic systems with an Hardy-Leray potential","authors":"Fatima Zohra Bengrine , Ana Primo , Giovanni Siclari","doi":"10.1016/j.jmaa.2025.129533","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study the problem of existence or non existence of positive supersolution to the system<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mfrac><mrow><mi>u</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>+</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>,</mo></mtd><mtd><mtext> in </mtext><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>v</mi><mo>=</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mfrac><mrow><mi>v</mi></mrow><mrow><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>+</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>,</mo></mtd><mtd><mtext> in </mtext><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, is a regular domain containing the origin and:</div><div><em>i</em>) <span><math><mi>f</mi><mo>=</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, <span><math><mi>i</mi><mi>i</mi><mo>)</mo></math></span> <span><math><mi>f</mi><mo>=</mo><mo>|</mo><mi>∇</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>=</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup></math></span>, <span><math><mi>i</mi><mi>i</mi><mi>i</mi><mo>)</mo></math></span> <span><math><mi>f</mi><mo>=</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo><mi>g</mi><mo>=</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup></math></span>.</div><div>According to the form of the nonlinearities, we are able to get the existence of critical curves separating the existence and the non existence regions. In the case <span><math><mi>f</mi><mo>=</mo><msup><mrow><mi>v</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> and <span><math><mi>g</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>, we study the Cauchy system in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></math></span>. The existence of a Fujita type exponent is deeply analyzed.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129533"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003142","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study the problem of existence or non existence of positive supersolution to the system where , is a regular domain containing the origin and:
i) , , .
According to the form of the nonlinearities, we are able to get the existence of critical curves separating the existence and the non existence regions. In the case and , we study the Cauchy system in . The existence of a Fujita type exponent is deeply analyzed.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.