Investigation of the stacking sequence and cutting parameters effect on hole morphology in hybrid FML composites

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Mehmet Akif Doğan , Ahmet Yapici , Lokman Gemi , Şakir Yazman , Sezer Morkavuk , Uğur Köklü
{"title":"Investigation of the stacking sequence and cutting parameters effect on hole morphology in hybrid FML composites","authors":"Mehmet Akif Doğan ,&nbsp;Ahmet Yapici ,&nbsp;Lokman Gemi ,&nbsp;Şakir Yazman ,&nbsp;Sezer Morkavuk ,&nbsp;Uğur Köklü","doi":"10.1016/j.compositesb.2025.112464","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber metal laminates (FMLs) are widely used in a wide range of engineering applications, especially in the aerospace industry, due to their superior functional properties and low cost. In this experimental study, hybrid FML composite specimens consisting of five different Al2024/FRP/Al2024 stacked glass and carbon fiber layers were fabricated to investigate the effect of stacking sequences and cutting parameters on the drilling process. The drilling machinability properties of the specimens were investigated by considering the cutting force, torque, surface roughness and damage analyses in the hole after drilling and the results are presented comparatively. As a result of the experimental study, it was determined that the stacking sequences have a significant effect on the machinability. In terms of cutting forces, it was observed that the cutting force increased in carbon stacked areas and the cutting forces tended to decrease in glass stacks. In torque values, there is an increase in glass stacks and a decrease in carbon stacks. The highest roughness values were measured from all-glass stacked specimens. In hybrid composites, it was observed that glass stacks generally increased the surface roughness.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"300 ","pages":"Article 112464"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825003658","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fiber metal laminates (FMLs) are widely used in a wide range of engineering applications, especially in the aerospace industry, due to their superior functional properties and low cost. In this experimental study, hybrid FML composite specimens consisting of five different Al2024/FRP/Al2024 stacked glass and carbon fiber layers were fabricated to investigate the effect of stacking sequences and cutting parameters on the drilling process. The drilling machinability properties of the specimens were investigated by considering the cutting force, torque, surface roughness and damage analyses in the hole after drilling and the results are presented comparatively. As a result of the experimental study, it was determined that the stacking sequences have a significant effect on the machinability. In terms of cutting forces, it was observed that the cutting force increased in carbon stacked areas and the cutting forces tended to decrease in glass stacks. In torque values, there is an increase in glass stacks and a decrease in carbon stacks. The highest roughness values were measured from all-glass stacked specimens. In hybrid composites, it was observed that glass stacks generally increased the surface roughness.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信