Exploring the sharp propagation connectivity threshold in hypergraphs

IF 1.2 3区 数学 Q1 MATHEMATICS
Guangyan Zhou , Bin Wang
{"title":"Exploring the sharp propagation connectivity threshold in hypergraphs","authors":"Guangyan Zhou ,&nbsp;Bin Wang","doi":"10.1016/j.jmaa.2025.129509","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the propagation connectivity, a generalized connectivity property of a generalized Erdős-Rényi model, denoted as <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span>, which comprises both 2-edges and 3-edges. We find that there exist sharp phase transitions from a region where with high probability <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is propagation connected to a region where with high probability <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> is not propagation connected. Moreover, the critical values at which the phase transitions occur are located exactly.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"550 1","pages":"Article 129509"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002902","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the propagation connectivity, a generalized connectivity property of a generalized Erdős-Rényi model, denoted as G(n,p2,p3), which comprises both 2-edges and 3-edges. We find that there exist sharp phase transitions from a region where with high probability G(n,p2,p3) is propagation connected to a region where with high probability G(n,p2,p3) is not propagation connected. Moreover, the critical values at which the phase transitions occur are located exactly.
探索超图中的急剧传播连通性阈值
本文研究了广义Erdős-Rényi模型G(n,p2,p3)的传播连通性,即广义连通性,该模型同时包含2边和3边。我们发现从一个高概率G(n,p2,p3)是传播连通的区域到另一个高概率G(n,p2,p3)不是传播连通的区域存在明显的相变。此外,还精确地确定了发生相变的临界值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信