{"title":"Exact solution of the parameter identification inverse problem for the Bloch–McConnell equations. Longitudinal magnetization","authors":"Ivan Argatov, Vitaly Kocherbitov","doi":"10.1016/j.jmr.2025.107873","DOIUrl":null,"url":null,"abstract":"<div><div>A two-site magnetic exchange model comprising a set of two linear first-order differential Bloch–McConnell equations is considered. The relaxation and exchange behavior is described using a symmetrical form of the general solution derived in the case of longitudinal magnetization for the zero initial conditions. The inverse problem with limited magnetization information has been solved exactly in an analytical explicit form under mild <em>a priori</em> knowledge about the exchange and relaxation parameters.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"375 ","pages":"Article 107873"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109078072500045X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A two-site magnetic exchange model comprising a set of two linear first-order differential Bloch–McConnell equations is considered. The relaxation and exchange behavior is described using a symmetrical form of the general solution derived in the case of longitudinal magnetization for the zero initial conditions. The inverse problem with limited magnetization information has been solved exactly in an analytical explicit form under mild a priori knowledge about the exchange and relaxation parameters.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.