The de novo strategy for bifunctional peptides coating to enhance osteointegration capacity of the implant

IF 5.4 2区 医学 Q1 BIOPHYSICS
Siwang Hu , Zeyu Shou , Chengwei Xu , Hongxiang Wang , Zhongyun Li , Xingjie Zan , Na Li , Shihao Xu
{"title":"The de novo strategy for bifunctional peptides coating to enhance osteointegration capacity of the implant","authors":"Siwang Hu ,&nbsp;Zeyu Shou ,&nbsp;Chengwei Xu ,&nbsp;Hongxiang Wang ,&nbsp;Zhongyun Li ,&nbsp;Xingjie Zan ,&nbsp;Na Li ,&nbsp;Shihao Xu","doi":"10.1016/j.colsurfb.2025.114642","DOIUrl":null,"url":null,"abstract":"<div><div>Bone implants represent a significant global market; however, they are plagued by a high long-term failure rate, with approximately 19.2 % of implants failing within 10 years. This leads to considerable physical pain, mental distress for patients, and a substantial financial burden on public healthcare systems. Herein, we propose a novel strategy that using the interactions between positively charged hexa-arginine (R6) and polyphenols in EGC/Fe MPN to present the bifunctional peptides, cellular adhesive peptide (RGD) and osteogenic growth peptide (OGP), onto implant coatings. To thoroughly investigate the preparation process and the physical and chemical properties of the dual-peptide functionalized coatings, several techniques were employed, including dissipation-quartz crystal microbalance (DQCM), ellipsometry, photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). These methods provided insights into the coating's composition, stability, mechanical properties, and surface roughness. In comparison to single-peptide functionalized coatings, the dual-peptide coatings demonstrated significantly improved performance in cellular adhesion at early stages, long-term cell proliferation, migration, antioxidant activity, osteogenic differentiation, inhibition of osteoclastogenesis, and enhanced in vivo osteointegration. This study contributes to the development of multifunctional coatings tailored to the complex biological processes involved in osteointegration.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"252 ","pages":"Article 114642"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525001493","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bone implants represent a significant global market; however, they are plagued by a high long-term failure rate, with approximately 19.2 % of implants failing within 10 years. This leads to considerable physical pain, mental distress for patients, and a substantial financial burden on public healthcare systems. Herein, we propose a novel strategy that using the interactions between positively charged hexa-arginine (R6) and polyphenols in EGC/Fe MPN to present the bifunctional peptides, cellular adhesive peptide (RGD) and osteogenic growth peptide (OGP), onto implant coatings. To thoroughly investigate the preparation process and the physical and chemical properties of the dual-peptide functionalized coatings, several techniques were employed, including dissipation-quartz crystal microbalance (DQCM), ellipsometry, photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). These methods provided insights into the coating's composition, stability, mechanical properties, and surface roughness. In comparison to single-peptide functionalized coatings, the dual-peptide coatings demonstrated significantly improved performance in cellular adhesion at early stages, long-term cell proliferation, migration, antioxidant activity, osteogenic differentiation, inhibition of osteoclastogenesis, and enhanced in vivo osteointegration. This study contributes to the development of multifunctional coatings tailored to the complex biological processes involved in osteointegration.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信