{"title":"Similarity and geographically weighted regression considering spatial scales of features space","authors":"Shifeng Yu , Xiaoyu Hu , Yehua Sheng , Chenmeng Zhao","doi":"10.1016/j.spasta.2025.100897","DOIUrl":null,"url":null,"abstract":"<div><div>Unlike a geographically weighted regression (GWR), a similarity and geographically weighted regression (SGWR) calculates weights using attribute and geographic similarities, thereby effectively improving the accuracy of the model. Nevertheless, SGWR does not set an attribute similarity bandwidth. This leads to its inability to measure the scale of variation of spatial processes in feature space. In addition, owing to the solving method used, SGWR can get stuck in local optima. To address these issues, this study proposed an improved similarity and geographically weighted regression model (SGWR-GD) that adds bandwidth to the attribute similarity kernel function. This parameter gives SGWR-GD the ability to measure the scale of change of spatial processes in the attribute dimension and thus enhances the flexibility of modelling. When solving the model, SGWR-GD first calculated the gradient of the model's Modified Akaike Information Criterion (AICc) with respect to the two bandwidths and the impact ratio. Subsequently, the optimal global solution of the model was obtained based on a gradient descent algorithm with box constraints. SGWR-GD and SGWR were applied to five different datasets and the accuracies of their fitting results were compared. SGWR-GD significantly improved the accuracy of the model compared to SGWR. In addition, the SGWR-GD stably determined the global optimal solution for each parameter. Simultaneously, the distribution of local residuals was also more stable.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"67 ","pages":"Article 100897"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000193","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Unlike a geographically weighted regression (GWR), a similarity and geographically weighted regression (SGWR) calculates weights using attribute and geographic similarities, thereby effectively improving the accuracy of the model. Nevertheless, SGWR does not set an attribute similarity bandwidth. This leads to its inability to measure the scale of variation of spatial processes in feature space. In addition, owing to the solving method used, SGWR can get stuck in local optima. To address these issues, this study proposed an improved similarity and geographically weighted regression model (SGWR-GD) that adds bandwidth to the attribute similarity kernel function. This parameter gives SGWR-GD the ability to measure the scale of change of spatial processes in the attribute dimension and thus enhances the flexibility of modelling. When solving the model, SGWR-GD first calculated the gradient of the model's Modified Akaike Information Criterion (AICc) with respect to the two bandwidths and the impact ratio. Subsequently, the optimal global solution of the model was obtained based on a gradient descent algorithm with box constraints. SGWR-GD and SGWR were applied to five different datasets and the accuracies of their fitting results were compared. SGWR-GD significantly improved the accuracy of the model compared to SGWR. In addition, the SGWR-GD stably determined the global optimal solution for each parameter. Simultaneously, the distribution of local residuals was also more stable.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.