Double-layer biodegradable hydrogel based on tragacanth gum as an electrically conductive nanoplatform for TENS device application

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Zohre Jafari Vafa , Ehsan Nazarzadeh Zare , Mohammad Reza Fadavi Eslam
{"title":"Double-layer biodegradable hydrogel based on tragacanth gum as an electrically conductive nanoplatform for TENS device application","authors":"Zohre Jafari Vafa ,&nbsp;Ehsan Nazarzadeh Zare ,&nbsp;Mohammad Reza Fadavi Eslam","doi":"10.1016/j.carbpol.2025.123540","DOIUrl":null,"url":null,"abstract":"<div><div>This research focuses on designing and creating a double-layer bio-hydrogel made from tragacanth gum (TG) and carboxylated graphene (Gr<sub>F</sub>), coated with polyaniline (PANI) for transcutaneous electrical nerve stimulation (TENS) devices. X-ray diffraction (XRD) analysis showed that the PANI coating removed peaks associated with crystalline regions (13.99° and 16.87°) in the tragacanth gum/polyvinyl alcohol/carboxylated graphene (TPG) bio-hydrogel. This indicates strong interactions between the PANI layer and the TPG bio-hydrogel matrix, with reduced crystallinity due to structural changes. Conductivity tests revealed significant improvements from both Gr<sub>F</sub> and the PANI coating. At low frequencies (80 Hz), the PANI coating increased the alternating current conductivity of the tragacanth gum/polyvinyl alcohol (TP) bio-hydrogel by 20,481 times and that of the TPG bio-hydrogel by 1804 times. Contact angle measurements indicated a low hydrophilic surface (61.4°), thanks to the Gr<sub>F</sub> and PANI coating. FESEM analysis confirmed the uniform distribution of Gr<sub>F</sub> within the bio-hydrogel and revealed two distinct shapes in the PANI coating, indicating improved structural integrity and functionality. Mechanical tests showed a 4.59-fold increase in tensile strength, improving durability. MTT assays confirmed biocompatibility (&gt;90.37 % cell viability), and the bio-hydrogel biodegraded completely within two months.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"358 ","pages":"Article 123540"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725003212","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This research focuses on designing and creating a double-layer bio-hydrogel made from tragacanth gum (TG) and carboxylated graphene (GrF), coated with polyaniline (PANI) for transcutaneous electrical nerve stimulation (TENS) devices. X-ray diffraction (XRD) analysis showed that the PANI coating removed peaks associated with crystalline regions (13.99° and 16.87°) in the tragacanth gum/polyvinyl alcohol/carboxylated graphene (TPG) bio-hydrogel. This indicates strong interactions between the PANI layer and the TPG bio-hydrogel matrix, with reduced crystallinity due to structural changes. Conductivity tests revealed significant improvements from both GrF and the PANI coating. At low frequencies (80 Hz), the PANI coating increased the alternating current conductivity of the tragacanth gum/polyvinyl alcohol (TP) bio-hydrogel by 20,481 times and that of the TPG bio-hydrogel by 1804 times. Contact angle measurements indicated a low hydrophilic surface (61.4°), thanks to the GrF and PANI coating. FESEM analysis confirmed the uniform distribution of GrF within the bio-hydrogel and revealed two distinct shapes in the PANI coating, indicating improved structural integrity and functionality. Mechanical tests showed a 4.59-fold increase in tensile strength, improving durability. MTT assays confirmed biocompatibility (>90.37 % cell viability), and the bio-hydrogel biodegraded completely within two months.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信