Ahmad Al Takash , Khaireldin Faraj , Jalal Faraj , Hicham El Hage , Ali Hage-Diab , Mahmoud Khaled , Tareq Salameh , Abdul-Kadir Hamid , Mousa Hussein
{"title":"A review on advanced phase change material-based cooling for energy-efficient electronics","authors":"Ahmad Al Takash , Khaireldin Faraj , Jalal Faraj , Hicham El Hage , Ali Hage-Diab , Mahmoud Khaled , Tareq Salameh , Abdul-Kadir Hamid , Mousa Hussein","doi":"10.1016/j.ecmx.2025.100994","DOIUrl":null,"url":null,"abstract":"<div><div>Increased power densities brought about by the quick development of high-power electronic devices call for effective thermal management to guarantee optimum performance and endurance. PCMs offer a passive and sustainable cooling solution, enhancing system reliability and energy efficiency. To maximize thermal energy management in electronic devices, this study intends to examine recent developments in PCM-based cooling systems over the previous five years, emphasizing their integration with hybrid cooling technologies such as fins, heat pipes, and nanoparticle-enhanced PCMs. In contrast to traditional reviews, this work focuses on hybrid PCM designs, demonstrating how heat dissipation is greatly enhanced by combining PCMs with nanomaterials, expanded surfaces, and active cooling approaches. Energy consumption in cooling systems can be reduced by optimizing these thermal management techniques, which will support sustainable energy management objectives. A thorough evaluation of recent research was carried out to assess the thermal performance of several PCM types, such as paraffin wax and RT-35HC, as well as nano-enhanced PCMs infused with graphene and metallic nanoparticles. Their effects on lowering temperatures and improving thermal conductivity in electronic cooling applications are the main topic of the review. While nano-enhanced PCMs exhibit a thermal conductivity gain of more than 100 %, paraffin wax-based PCMs can lower operating temperatures by up to 15 °C. High-power electronics showed temperature reductions of about 10 °C using RT-35HC, demonstrating the promise of hybrid PCM systems for energy-efficient cooling solutions.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"26 ","pages":"Article 100994"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174525001266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Increased power densities brought about by the quick development of high-power electronic devices call for effective thermal management to guarantee optimum performance and endurance. PCMs offer a passive and sustainable cooling solution, enhancing system reliability and energy efficiency. To maximize thermal energy management in electronic devices, this study intends to examine recent developments in PCM-based cooling systems over the previous five years, emphasizing their integration with hybrid cooling technologies such as fins, heat pipes, and nanoparticle-enhanced PCMs. In contrast to traditional reviews, this work focuses on hybrid PCM designs, demonstrating how heat dissipation is greatly enhanced by combining PCMs with nanomaterials, expanded surfaces, and active cooling approaches. Energy consumption in cooling systems can be reduced by optimizing these thermal management techniques, which will support sustainable energy management objectives. A thorough evaluation of recent research was carried out to assess the thermal performance of several PCM types, such as paraffin wax and RT-35HC, as well as nano-enhanced PCMs infused with graphene and metallic nanoparticles. Their effects on lowering temperatures and improving thermal conductivity in electronic cooling applications are the main topic of the review. While nano-enhanced PCMs exhibit a thermal conductivity gain of more than 100 %, paraffin wax-based PCMs can lower operating temperatures by up to 15 °C. High-power electronics showed temperature reductions of about 10 °C using RT-35HC, demonstrating the promise of hybrid PCM systems for energy-efficient cooling solutions.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.