Most of the minimization problems have a unique solution

IF 1.2 3区 数学 Q1 MATHEMATICS
Ľubica Holá
{"title":"Most of the minimization problems have a unique solution","authors":"Ľubica Holá","doi":"10.1016/j.jmaa.2025.129523","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a Tychonoff topological space, <span><math><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> be the space of continuous real-valued functions defined on <em>X</em> and <span><math><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> be the space of all nonempty compact subsets of <em>X</em>. Define the multifunction argmin<span><math><mo>:</mo><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>×</mo><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>→</mo><mi>X</mi></math></span> as follows: argmin <span><math><mo>(</mo><mi>f</mi><mo>,</mo><mi>K</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>K</mi><mo>:</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>:</mo><mi>y</mi><mo>∈</mo><mi>K</mi><mo>}</mo><mo>}</mo></math></span>. Let <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>U</mi></mrow></msub></math></span> be the topology of uniform convergence on <span><math><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> the Vietoris topology on <span><math><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. We prove that argmin<span><math><mo>:</mo><mo>(</mo><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>)</mo><mo>×</mo><mo>(</mo><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>X</mi></math></span> is minimal usco and extend Kenderov's generic optimization theorem to Tychonoff almost Čech-complete spaces.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129523"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500304X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a Tychonoff topological space, C(X) be the space of continuous real-valued functions defined on X and K(X) be the space of all nonempty compact subsets of X. Define the multifunction argmin:C(X)×K(X)X as follows: argmin (f,K)={xK:f(x)=min{f(y):yK}}. Let τU be the topology of uniform convergence on C(X) and τV the Vietoris topology on K(X). We prove that argmin:(C(X),τU)×(K(X),τV)X is minimal usco and extend Kenderov's generic optimization theorem to Tychonoff almost Čech-complete spaces.
大多数最小化问题都有一个唯一的解决方案
设X是一个Tychonoff拓扑空间,C(X)是定义在X上的连续实值函数的空间,K (X)是X的所有非空紧子集的空间。定义多重函数argmin:C(X)×K(X)→X如下:argmin (f,K)={X∈K:f(X) =min ({f(y):y∈K}}。设τU为C(X)上一致收敛的拓扑,τV为K(X)上的Vietoris拓扑。证明了argmin:(C(X),τU)×(K(X),τV)→X是最小usco,并将Kenderov泛型优化定理推广到Tychonoff几乎Čech-complete空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信