{"title":"Most of the minimization problems have a unique solution","authors":"Ľubica Holá","doi":"10.1016/j.jmaa.2025.129523","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a Tychonoff topological space, <span><math><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> be the space of continuous real-valued functions defined on <em>X</em> and <span><math><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> be the space of all nonempty compact subsets of <em>X</em>. Define the multifunction argmin<span><math><mo>:</mo><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>×</mo><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>→</mo><mi>X</mi></math></span> as follows: argmin <span><math><mo>(</mo><mi>f</mi><mo>,</mo><mi>K</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>x</mi><mo>∈</mo><mi>K</mi><mo>:</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo></mo><mo>{</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>:</mo><mi>y</mi><mo>∈</mo><mi>K</mi><mo>}</mo><mo>}</mo></math></span>. Let <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>U</mi></mrow></msub></math></span> be the topology of uniform convergence on <span><math><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> the Vietoris topology on <span><math><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. We prove that argmin<span><math><mo>:</mo><mo>(</mo><mi>C</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>)</mo><mo>×</mo><mo>(</mo><mi>K</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub><mo>)</mo><mo>→</mo><mi>X</mi></math></span> is minimal usco and extend Kenderov's generic optimization theorem to Tychonoff almost Čech-complete spaces.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129523"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500304X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let X be a Tychonoff topological space, be the space of continuous real-valued functions defined on X and be the space of all nonempty compact subsets of X. Define the multifunction argmin as follows: argmin . Let be the topology of uniform convergence on and the Vietoris topology on . We prove that argmin is minimal usco and extend Kenderov's generic optimization theorem to Tychonoff almost Čech-complete spaces.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.