{"title":"Homoclinic solutions for a class of second-order singular Hamiltonian systems","authors":"Morched Boughariou , Marouen Mahmoud","doi":"10.1016/j.jmaa.2025.129535","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a class of singular second-order Hamiltonian systems in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></math></span><span><span><span><math><mover><mrow><mi>q</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>+</mo><mi>∇</mi><mi>V</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>q</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∉</mo><mi>D</mi><mo>,</mo></math></span></span></span> where <span><math><mi>V</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>D</mi><mo>→</mo><mi>R</mi></math></span> has a strict global maximum 0 at the origin and <em>D</em> ⊂ <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> is a set of singularities, that is, <span><math><mi>V</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>→</mo><mo>−</mo><mo>∞</mo></math></span> as <span><math><mrow><mi>dist</mi></mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>D</mi><mo>)</mo><mo>→</mo><mn>0</mn></math></span>. Under the condition that <em>D</em> is a compact set with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-boundary and <span><math><mi>V</mi><mo>(</mo><mi>q</mi><mo>)</mo><mo>∼</mo><mo>−</mo><msup><mrow><mo>[</mo><mrow><mi>dist</mi></mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>D</mi><mo>)</mo><mo>]</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></math></span> as <span><math><mrow><mi>dist</mi></mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>D</mi><mo>)</mo><mo>→</mo><mn>0</mn></math></span> for some <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span>, we show the existence of a nontrivial homoclinic solution at 0 via a suitable approximation method.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129535"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003166","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a class of singular second-order Hamiltonian systems in where has a strict global maximum 0 at the origin and D ⊂ is a set of singularities, that is, as . Under the condition that D is a compact set with -boundary and as for some , we show the existence of a nontrivial homoclinic solution at 0 via a suitable approximation method.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.