Breathable and imperceptible on-skin electronic tattoos with a hybrid of silk and cellulose and highly conductive electrodes for monitoring skin hydration

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Juwan Choi , Soohoon Lee , Shalik Ram Joshi , Sunghwan Kim
{"title":"Breathable and imperceptible on-skin electronic tattoos with a hybrid of silk and cellulose and highly conductive electrodes for monitoring skin hydration","authors":"Juwan Choi ,&nbsp;Soohoon Lee ,&nbsp;Shalik Ram Joshi ,&nbsp;Sunghwan Kim","doi":"10.1016/j.ijbiomac.2025.142707","DOIUrl":null,"url":null,"abstract":"<div><div>Skin, the largest organ protecting the body, acts as a pathway connecting the inside and outside of the body, allowing us to examine health conditions. Therefore, on-skin electronics are attractive for monitoring biosignals in daily life for point-on-care healthcare. However, integrating highly conductive electrodes while maintaining all the properties suitable for on-skin devices, such as flexibility, imperceptibility, breathability, and biocompatibility, is still challenging. Here, we present breathable and imperceptible electronic tattoos (E-tattoos), on which highly conductive gold (Au) electrodes are integrated. The E-tattoo, which a hybrid of two nanostructured biomaterials, ultrathin silk film and cellulose nanofiber mat, possesses all favorable properties for on-skin electronics. Due to the inherent strong adhesion of silk to Au, patterned Au electrodes, with a high conductivity (2.84 × 10<sup>7</sup> S/m) comparable to that of pure Au (4.01 × 10<sup>7</sup> S/m), can be integrated on the E-tattoo. High water-vapor transmission and low leakage current through E-tattoos provide skin-compatibility (nonirritating response). With these advantages, the E-tattoo is applied to monitor skin hydration. On-skin impedance measurements reveal dependency on skin hydration, and impedances measured with E-tattoos show better signal stability than those measured for Au nanomesh patches. This study presents a new on-skin electronic platform for monitoring skin conditions.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"308 ","pages":"Article 142707"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025032593","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Skin, the largest organ protecting the body, acts as a pathway connecting the inside and outside of the body, allowing us to examine health conditions. Therefore, on-skin electronics are attractive for monitoring biosignals in daily life for point-on-care healthcare. However, integrating highly conductive electrodes while maintaining all the properties suitable for on-skin devices, such as flexibility, imperceptibility, breathability, and biocompatibility, is still challenging. Here, we present breathable and imperceptible electronic tattoos (E-tattoos), on which highly conductive gold (Au) electrodes are integrated. The E-tattoo, which a hybrid of two nanostructured biomaterials, ultrathin silk film and cellulose nanofiber mat, possesses all favorable properties for on-skin electronics. Due to the inherent strong adhesion of silk to Au, patterned Au electrodes, with a high conductivity (2.84 × 107 S/m) comparable to that of pure Au (4.01 × 107 S/m), can be integrated on the E-tattoo. High water-vapor transmission and low leakage current through E-tattoos provide skin-compatibility (nonirritating response). With these advantages, the E-tattoo is applied to monitor skin hydration. On-skin impedance measurements reveal dependency on skin hydration, and impedances measured with E-tattoos show better signal stability than those measured for Au nanomesh patches. This study presents a new on-skin electronic platform for monitoring skin conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信