Rohola Rahnavard , Hélder D. Craveiro , Rui A. Simões , Luís Laím , Aldina Santiago , Leroy Gardner
{"title":"Testing, simulation and design of built-up cold-formed steel-lightweight concrete (CFS-LWC) composite beams subjected to elevated temperatures","authors":"Rohola Rahnavard , Hélder D. Craveiro , Rui A. Simões , Luís Laím , Aldina Santiago , Leroy Gardner","doi":"10.1016/j.tws.2025.113212","DOIUrl":null,"url":null,"abstract":"<div><div>Cold-formed steel (CFS) products are lightweight, structurally efficient and highly versatile, making them suitable for a wide range of construction applications. Although studies have been performed to analyse the flexural behaviour of CFS composite beams at room temperature, their performance at elevated temperatures has yet to be investigated; this is, therefore, the focus of the present study. Through experiments, the structural fire performance of innovative built-up CFS-lightweight concrete (LWC) composite beams is examined. Two full-scale fire tests on simply-supported CFS-LWC composite beams are presented. The test setup, test procedure and obtained results, including the temperature evolution, fire resistance time and failure modes, are described. A numerical modelling study is also presented through which additional insights into the observed structural behaviour are gained. Comparisons between the experimental results and those determined according to EN 1994–1–2 design provision are presented. The results showed that, despite the studied CFS-LWC composite sections being beyond the scope of the code, good predictions of fire resistance were obtained.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"213 ","pages":"Article 113212"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125003064","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Cold-formed steel (CFS) products are lightweight, structurally efficient and highly versatile, making them suitable for a wide range of construction applications. Although studies have been performed to analyse the flexural behaviour of CFS composite beams at room temperature, their performance at elevated temperatures has yet to be investigated; this is, therefore, the focus of the present study. Through experiments, the structural fire performance of innovative built-up CFS-lightweight concrete (LWC) composite beams is examined. Two full-scale fire tests on simply-supported CFS-LWC composite beams are presented. The test setup, test procedure and obtained results, including the temperature evolution, fire resistance time and failure modes, are described. A numerical modelling study is also presented through which additional insights into the observed structural behaviour are gained. Comparisons between the experimental results and those determined according to EN 1994–1–2 design provision are presented. The results showed that, despite the studied CFS-LWC composite sections being beyond the scope of the code, good predictions of fire resistance were obtained.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.