Hang Lv , Ping Hu , Chenyu Ge, Fengyi Lu, Hui Li, Di Wu, Zhidan Xue, Yimeng Guo, Xixi Liu, Liangfang Zhu, Changwei Hu
{"title":"Double-protective strategy enabling high-efficiency production of levulinic acid from high-loading cellulose","authors":"Hang Lv , Ping Hu , Chenyu Ge, Fengyi Lu, Hui Li, Di Wu, Zhidan Xue, Yimeng Guo, Xixi Liu, Liangfang Zhu, Changwei Hu","doi":"10.1016/j.jechem.2025.03.013","DOIUrl":null,"url":null,"abstract":"<div><div>Valorization of renewable cellulose into initial platform chemicals (IPCs) generally suffers from low process efficiency owing to difficult depolymerization of recalcitrant cellulose and troublesome repolymerization of high-reactive intermediates to undesired humins. Herein, we report a double-protective strategy for cellulose depolymerization and orientated conversion to levulinic acid (LA), one of the important IPCs, by in-situ adding protective formaldehyde (HCHO). This approach initiates from the (hemi)acetalation of hydroxyl groups in cellulose with HCHO, causing controllable depolymerization to (hemi)acetalized glucose with increased rate kinetically and a new mechanism of its catalytic conversion to LA via (hemi)acetal-driven direct C1–C2 cleavage. As such, the cellulose-to-LA conversion is protectively proceeded with the repolymerization of reactive intermediates prevented remarkably, leading to an excellent LA yield of 87.3 mol% from high-loading microcrystalline cellulose (15.0 wt% in aqueous phase) in a biphasic solvent containing 2-methyltetrahydrofuran and water. The process efficiency, expressed as space-time yield, is improved by 3.6 fold when compared with a non-protective approach. This work highlights an advance in maximizing the utilization of biomass-derived carbons for high-efficiency production of important IPCs directly from cellulose for future biorefinery.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"106 ","pages":"Pages 577-586"},"PeriodicalIF":13.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625002220","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Valorization of renewable cellulose into initial platform chemicals (IPCs) generally suffers from low process efficiency owing to difficult depolymerization of recalcitrant cellulose and troublesome repolymerization of high-reactive intermediates to undesired humins. Herein, we report a double-protective strategy for cellulose depolymerization and orientated conversion to levulinic acid (LA), one of the important IPCs, by in-situ adding protective formaldehyde (HCHO). This approach initiates from the (hemi)acetalation of hydroxyl groups in cellulose with HCHO, causing controllable depolymerization to (hemi)acetalized glucose with increased rate kinetically and a new mechanism of its catalytic conversion to LA via (hemi)acetal-driven direct C1–C2 cleavage. As such, the cellulose-to-LA conversion is protectively proceeded with the repolymerization of reactive intermediates prevented remarkably, leading to an excellent LA yield of 87.3 mol% from high-loading microcrystalline cellulose (15.0 wt% in aqueous phase) in a biphasic solvent containing 2-methyltetrahydrofuran and water. The process efficiency, expressed as space-time yield, is improved by 3.6 fold when compared with a non-protective approach. This work highlights an advance in maximizing the utilization of biomass-derived carbons for high-efficiency production of important IPCs directly from cellulose for future biorefinery.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy