Seung-Min Lee , Ju Yeon Kwak , Dongryeol Ryu , Yeo Jin Shin , Younglang Lee , Yong Ryoul Yang , Kwang-Pyo Lee , Jae Myoung Suh , Ki-Sun Kwon
{"title":"High glucose induces FABP3-mediated membrane rigidity via downregulation of SIRT1","authors":"Seung-Min Lee , Ju Yeon Kwak , Dongryeol Ryu , Yeo Jin Shin , Younglang Lee , Yong Ryoul Yang , Kwang-Pyo Lee , Jae Myoung Suh , Ki-Sun Kwon","doi":"10.1016/j.bbagen.2025.130802","DOIUrl":null,"url":null,"abstract":"<div><div>High glucose induces an atypical lipid composition in skeletal muscle, leading to loss of muscle mass and strength. However, the mechanisms underlying this glucose toxicity are not fully understood. Analysis of genes associated with a phenotype using the BXD phenome resource revealed that increased <em>Fabp3</em> expression in skeletal muscle correlated with hyperglycemia. FABP3 expression was also increased in hyperglycemic mouse models such as leptin-deficient <em>ob/ob</em>, <em>Ins2</em>Akita, and high-fat fed mice, as well as in aged mice. In cultured myotubes, high glucose elevated the mRNA and protein levels of FABP3, which contributes to decreased membrane fluidity, along with other mechanisms. FABP3 expression was dependent on the NAD<sup>+</sup>/NADH ratio and SIRT1 activity, suggesting a mechanism by which FABP3 is upregulated in hyperglycemic conditions. Our findings propose that FABP3 links hyperglycemia to atypical membrane physicochemical properties, which may weaken contractile and metabolic function, particularly in skeletal muscle.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 6","pages":"Article 130802"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000479","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High glucose induces an atypical lipid composition in skeletal muscle, leading to loss of muscle mass and strength. However, the mechanisms underlying this glucose toxicity are not fully understood. Analysis of genes associated with a phenotype using the BXD phenome resource revealed that increased Fabp3 expression in skeletal muscle correlated with hyperglycemia. FABP3 expression was also increased in hyperglycemic mouse models such as leptin-deficient ob/ob, Ins2Akita, and high-fat fed mice, as well as in aged mice. In cultured myotubes, high glucose elevated the mRNA and protein levels of FABP3, which contributes to decreased membrane fluidity, along with other mechanisms. FABP3 expression was dependent on the NAD+/NADH ratio and SIRT1 activity, suggesting a mechanism by which FABP3 is upregulated in hyperglycemic conditions. Our findings propose that FABP3 links hyperglycemia to atypical membrane physicochemical properties, which may weaken contractile and metabolic function, particularly in skeletal muscle.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.