MuSIA: Exploiting multi-source information fusion with abnormal activations for out-of-distribution detection

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Heng-yang Lu , Xin Guo , Wenyu Jiang , Chenyou Fan , Yuntao Du , Zhenhao Shao , Wei Fang , Xiaojun Wu
{"title":"MuSIA: Exploiting multi-source information fusion with abnormal activations for out-of-distribution detection","authors":"Heng-yang Lu ,&nbsp;Xin Guo ,&nbsp;Wenyu Jiang ,&nbsp;Chenyou Fan ,&nbsp;Yuntao Du ,&nbsp;Zhenhao Shao ,&nbsp;Wei Fang ,&nbsp;Xiaojun Wu","doi":"10.1016/j.neunet.2025.107427","DOIUrl":null,"url":null,"abstract":"<div><div>In the open world, out-of-distribution (OOD) detection is crucial to ensure the reliability and robustness of deep learning models. Traditional OOD detection methods are often limited to using single-source information coupled with the abnormal activations of OOD data, resulting in poor detection performance for OOD samples. To this end, we propose MuSIA (Multi-Source Information Fusion with Abnormal Activations) to obtain effective information from multiple information sources and capture abnormal activations to improve the performance of OOD detection. To verify the effectiveness of MuSIA, we conducted experiments with six OOD datasets on six pre-trained models (ViT, RepVGG, DeiT, etc.). Experimental results show that compared with the SOTA method, MuSIA reduces FPR95 (<span><math><mi>↓</mi></math></span>) by an average of 7.78%. Further ablation studies deeply explore the role of each component in MuSIA, especially the synergy of capturing abnormal activation and multi-source information fusion.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107427"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025003065","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the open world, out-of-distribution (OOD) detection is crucial to ensure the reliability and robustness of deep learning models. Traditional OOD detection methods are often limited to using single-source information coupled with the abnormal activations of OOD data, resulting in poor detection performance for OOD samples. To this end, we propose MuSIA (Multi-Source Information Fusion with Abnormal Activations) to obtain effective information from multiple information sources and capture abnormal activations to improve the performance of OOD detection. To verify the effectiveness of MuSIA, we conducted experiments with six OOD datasets on six pre-trained models (ViT, RepVGG, DeiT, etc.). Experimental results show that compared with the SOTA method, MuSIA reduces FPR95 () by an average of 7.78%. Further ablation studies deeply explore the role of each component in MuSIA, especially the synergy of capturing abnormal activation and multi-source information fusion.
MuSIA:利用多源信息融合和异常激活进行非分布检测
在开放世界中,out- distribution (OOD)检测对于保证深度学习模型的可靠性和鲁棒性至关重要。传统的OOD检测方法往往局限于使用单源信息,再加上OOD数据的异常激活,导致OOD样本的检测性能较差。为此,我们提出了MuSIA (Multi-Source Information Fusion with Abnormal Activations),从多个信息源中获取有效信息,捕获异常激活,从而提高OOD检测的性能。为了验证MuSIA的有效性,我们在6个预训练模型(ViT、RepVGG、DeiT等)上使用6个OOD数据集进行了实验。实验结果表明,与SOTA方法相比,MuSIA平均降低了7.78%的FPR95(↓)。进一步的消融研究深入探讨了各组分在MuSIA中的作用,特别是捕获异常激活和多源信息融合的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信