Layup angle effects on the damage and fracture behaviour of fibre composite foldcore sandwich structures under impacts

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Zhang Nana , Guo Xiaoming , Wang Hao , K.M. Liew
{"title":"Layup angle effects on the damage and fracture behaviour of fibre composite foldcore sandwich structures under impacts","authors":"Zhang Nana ,&nbsp;Guo Xiaoming ,&nbsp;Wang Hao ,&nbsp;K.M. Liew","doi":"10.1016/j.compstruct.2025.119146","DOIUrl":null,"url":null,"abstract":"<div><div>The S-shaped foldcore structure, an evolution of the V-shaped foldcore, offers enhanced energy absorption and impact resistance. Due to the complexity of the foldcore and the strong anisotropy of the fiber material, the fiber laying angle significantly influences the foldcore’s performance. This study investigates the effect of the fiber lay-up angle on the S-shaped foldcore’s anisotropy by fabricating foldcore sandwich composite panels using hot compression molding. Panels were laid along the in-face folding direction, the out-face folding direction, and cross-laid in both directions. A low-speed impact method was used to observe and analyze the damage to the foldcore structure. The impact process was also simulated using the finite element method combined with the Hashin’s criterion as a means of identification of material failure initiation to analyze the damage and fracture process. Results showed that the composite foldcore sandwich panel laid along the in-face folding direction exhibited the strongest impact resistance. Panels laid in the in-face folding direction were more prone to fracture due to higher damage levels, while those with fibers in the out-face folding direction were more susceptible to fiber tensile damage, causing more fracture in rear panel.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"363 ","pages":"Article 119146"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325003113","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The S-shaped foldcore structure, an evolution of the V-shaped foldcore, offers enhanced energy absorption and impact resistance. Due to the complexity of the foldcore and the strong anisotropy of the fiber material, the fiber laying angle significantly influences the foldcore’s performance. This study investigates the effect of the fiber lay-up angle on the S-shaped foldcore’s anisotropy by fabricating foldcore sandwich composite panels using hot compression molding. Panels were laid along the in-face folding direction, the out-face folding direction, and cross-laid in both directions. A low-speed impact method was used to observe and analyze the damage to the foldcore structure. The impact process was also simulated using the finite element method combined with the Hashin’s criterion as a means of identification of material failure initiation to analyze the damage and fracture process. Results showed that the composite foldcore sandwich panel laid along the in-face folding direction exhibited the strongest impact resistance. Panels laid in the in-face folding direction were more prone to fracture due to higher damage levels, while those with fibers in the out-face folding direction were more susceptible to fiber tensile damage, causing more fracture in rear panel.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信