LncRNA XIST inhibits mitophagy and increases mitochondrial dysfunction by promoting BNIP3 promoter methylation to facilitate the progression of KBD

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ruoxi Liu , Yi Xiao , Sihua Huang , Hao Wu , Jun Dong , Sixiang Zeng , Yongwei Li , Jintao Ye , Wei Wu , Mengxin Wang , Sanpeng Zhang , Zhaoxing Lin , Huanjin Song
{"title":"LncRNA XIST inhibits mitophagy and increases mitochondrial dysfunction by promoting BNIP3 promoter methylation to facilitate the progression of KBD","authors":"Ruoxi Liu ,&nbsp;Yi Xiao ,&nbsp;Sihua Huang ,&nbsp;Hao Wu ,&nbsp;Jun Dong ,&nbsp;Sixiang Zeng ,&nbsp;Yongwei Li ,&nbsp;Jintao Ye ,&nbsp;Wei Wu ,&nbsp;Mengxin Wang ,&nbsp;Sanpeng Zhang ,&nbsp;Zhaoxing Lin ,&nbsp;Huanjin Song","doi":"10.1016/j.molimm.2025.03.016","DOIUrl":null,"url":null,"abstract":"<div><div>The primary mechanisms underlying cartilage destruction in Kashin-Beck disease (KBD) involve excessive chondrocyte death and extracellular matrix (ECM) degradation. While long non-coding RNA XIST (lncRNA XIST) has been implicated in promoting chondrocyte injury in osteoarthritis (OA), its role in KBD-related chondrocyte injury remains poorly understood. In this study, joint tissues were collected from four healthy and four KBD-affected children, as well as five healthy and five KBD-affected adults, to assess the expression of lncRNA XIST. The results revealed a significant upregulation of lncRNA XIST in the cartilage tissues of KBD patients. To model KBD-induced chondrocyte damage in vitro, hypertrophic ATDC5 cells were exposed to 10 ng/ml T-2 toxin for 24 hours, which resulted in increased lncRNA XIST expression. Silencing lncRNA XIST was found to mitigate T-2 toxin-induced ECM degradation and chondrocyte apoptosis by alleviating defects in mitochondrial autophagy and dysfunction. Mechanistically, lncRNA XIST promoted the methylation of the BNIP3 promoter by recruiting DNA methyltransferases (DNMTs) to the BNIP3 promoter region, thereby suppressing BNIP3-mediated mitophagy and exacerbating mitochondrial dysfunction. To establish a KBD rat model, rats were fed a low-selenium diet supplemented with T-2 toxin for four weeks. Knockdown of lncRNA XIST in these rats attenuated articular cartilage damage and apoptosis, while enhancing collagen II expression. In conclusion, lncRNA XIST accelerates KBD progression by inhibiting mitophagy and promoting mitochondrial dysfunction through increased BNIP3 promoter methylation.</div></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"182 ","pages":"Pages 62-75"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589025000860","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The primary mechanisms underlying cartilage destruction in Kashin-Beck disease (KBD) involve excessive chondrocyte death and extracellular matrix (ECM) degradation. While long non-coding RNA XIST (lncRNA XIST) has been implicated in promoting chondrocyte injury in osteoarthritis (OA), its role in KBD-related chondrocyte injury remains poorly understood. In this study, joint tissues were collected from four healthy and four KBD-affected children, as well as five healthy and five KBD-affected adults, to assess the expression of lncRNA XIST. The results revealed a significant upregulation of lncRNA XIST in the cartilage tissues of KBD patients. To model KBD-induced chondrocyte damage in vitro, hypertrophic ATDC5 cells were exposed to 10 ng/ml T-2 toxin for 24 hours, which resulted in increased lncRNA XIST expression. Silencing lncRNA XIST was found to mitigate T-2 toxin-induced ECM degradation and chondrocyte apoptosis by alleviating defects in mitochondrial autophagy and dysfunction. Mechanistically, lncRNA XIST promoted the methylation of the BNIP3 promoter by recruiting DNA methyltransferases (DNMTs) to the BNIP3 promoter region, thereby suppressing BNIP3-mediated mitophagy and exacerbating mitochondrial dysfunction. To establish a KBD rat model, rats were fed a low-selenium diet supplemented with T-2 toxin for four weeks. Knockdown of lncRNA XIST in these rats attenuated articular cartilage damage and apoptosis, while enhancing collagen II expression. In conclusion, lncRNA XIST accelerates KBD progression by inhibiting mitophagy and promoting mitochondrial dysfunction through increased BNIP3 promoter methylation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular immunology
Molecular immunology 医学-免疫学
CiteScore
6.90
自引率
2.80%
发文量
324
审稿时长
50 days
期刊介绍: Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to: Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology Mechanisms of induction, regulation and termination of innate and adaptive immunity Intercellular communication, cooperation and regulation Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc) Mechanisms of action of the cells and molecules of the immune system Structural analysis Development of the immune system Comparative immunology and evolution of the immune system "Omics" studies and bioinformatics Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc) Technical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信