Wei Xu , Pan Liao , Miao Cao , David J. White , Bingjiang Lyu , Jia-Hong Gao
{"title":"Facilitating cognitive neuroscience research with 80-sensor optically pumped magnetometer magnetoencephalography (OPM-MEG)","authors":"Wei Xu , Pan Liao , Miao Cao , David J. White , Bingjiang Lyu , Jia-Hong Gao","doi":"10.1016/j.neuroimage.2025.121182","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in optically pumped magnetometer magnetoencephalography (OPM-MEG) make it a promising alternative to conventional SQUID-MEG systems. Nonetheless, as reported in the literature, current OPM-MEG systems are often constrained by a limited number of sampling points, which restricts their capability to match the full-head coverage offered by SQUID-MEG systems. Additionally, whether OPM-MEG can deliver results comparable to SQUID-MEG in practical cognitive neuroscience applications remains largely unexplored. In this study, we introduce a high-density, full-head coverage OPM-MEG system with 80 sensors and systematically compare the performance of OPM-MEG and SQUID-MEG, from sensor- to source-level analysis, across various classic cognitive tasks. Our results demonstrate that visual and auditory evoked fields captured using OPM-MEG align closely with those obtained from SQUID-MEG. Furthermore, steady-state visual evoked field and finger-tapping-induced beta power change recorded with OPM-MEG are accurately localized to corresponding brain regions, with activation centers highly congruent to those observed with SQUID-MEG. For resting-state recordings, the two modalities exhibit similar power distributions, functional connectomes, and microstate clusters. These findings indicate that the 80-sensor OPM-MEG system provides spatial and temporal characteristics comparable to those of traditional SQUID-MEG. Thus, our study offers empirical evidence supporting the efficacy of high-density OPM-MEG and suggests that OPM-MEG, with dense sampling capability, represents a compelling alternative to conventional SQUID-MEG, facilitating further exploration of human cognition.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"311 ","pages":"Article 121182"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001843","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in optically pumped magnetometer magnetoencephalography (OPM-MEG) make it a promising alternative to conventional SQUID-MEG systems. Nonetheless, as reported in the literature, current OPM-MEG systems are often constrained by a limited number of sampling points, which restricts their capability to match the full-head coverage offered by SQUID-MEG systems. Additionally, whether OPM-MEG can deliver results comparable to SQUID-MEG in practical cognitive neuroscience applications remains largely unexplored. In this study, we introduce a high-density, full-head coverage OPM-MEG system with 80 sensors and systematically compare the performance of OPM-MEG and SQUID-MEG, from sensor- to source-level analysis, across various classic cognitive tasks. Our results demonstrate that visual and auditory evoked fields captured using OPM-MEG align closely with those obtained from SQUID-MEG. Furthermore, steady-state visual evoked field and finger-tapping-induced beta power change recorded with OPM-MEG are accurately localized to corresponding brain regions, with activation centers highly congruent to those observed with SQUID-MEG. For resting-state recordings, the two modalities exhibit similar power distributions, functional connectomes, and microstate clusters. These findings indicate that the 80-sensor OPM-MEG system provides spatial and temporal characteristics comparable to those of traditional SQUID-MEG. Thus, our study offers empirical evidence supporting the efficacy of high-density OPM-MEG and suggests that OPM-MEG, with dense sampling capability, represents a compelling alternative to conventional SQUID-MEG, facilitating further exploration of human cognition.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.