José A.S. Laranjeira , Nicolas F. Martins , Lingyu Ye , Julio R. Sambrano , Xihao Chen
{"title":"Hydrogen storage engineering in PHE-graphene monolayer via potassium (K) decoration","authors":"José A.S. Laranjeira , Nicolas F. Martins , Lingyu Ye , Julio R. Sambrano , Xihao Chen","doi":"10.1016/j.ijhydene.2025.03.288","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for ecofriendly and efficient energy sources accelerates the transition from fossil fuels to hydrogen (H<sub>2</sub>), which requires advances in production, transportation, and storage technologies. This study investigates the functionalization of PHE-graphene via potassium (K) decoration. A comprehensive analysis of the K@PHE-graphene system revealed a transition from metallic to semiconductor character due to charge transfer from K adatoms (+0.89<span><math><mrow><mo>|</mo><mi>e</mi><mo>|</mo></mrow></math></span>). Molecular dynamics simulations confirmed the retention of K atoms at their preferred adsorption sites, ensuring the structural integrity of the substrate. K@PHE-graphene complex has an exceptional adsorption capacity of 7.47 wt%, exceeding the DOE target of 5.5 wt%. Thermodynamic analysis also highlighted an optimal storage conditions, achieving maximum capacity between 100-150 K at low pressures (0–20 atm) and maintaining efficiency at higher pressures (40–60 atm) even at elevated temperatures. These findings establish K@PHE-graphene as a promising candidate for reversible hydrogen storage applications.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"123 ","pages":"Pages 139-149"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925014235","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand for ecofriendly and efficient energy sources accelerates the transition from fossil fuels to hydrogen (H2), which requires advances in production, transportation, and storage technologies. This study investigates the functionalization of PHE-graphene via potassium (K) decoration. A comprehensive analysis of the K@PHE-graphene system revealed a transition from metallic to semiconductor character due to charge transfer from K adatoms (+0.89). Molecular dynamics simulations confirmed the retention of K atoms at their preferred adsorption sites, ensuring the structural integrity of the substrate. K@PHE-graphene complex has an exceptional adsorption capacity of 7.47 wt%, exceeding the DOE target of 5.5 wt%. Thermodynamic analysis also highlighted an optimal storage conditions, achieving maximum capacity between 100-150 K at low pressures (0–20 atm) and maintaining efficiency at higher pressures (40–60 atm) even at elevated temperatures. These findings establish K@PHE-graphene as a promising candidate for reversible hydrogen storage applications.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.