Plant competition dominates grass species interactions in a migrating marsh-forest ecotone

Keryn B. Gedan , Whitney C. Hoot , Eduardo Fernández-Pascual
{"title":"Plant competition dominates grass species interactions in a migrating marsh-forest ecotone","authors":"Keryn B. Gedan ,&nbsp;Whitney C. Hoot ,&nbsp;Eduardo Fernández-Pascual","doi":"10.1016/j.ecochg.2025.100095","DOIUrl":null,"url":null,"abstract":"<div><div>Ecotone communities are areas of high species turnover and steep environmental gradients. We investigated how environmental gradients shape species interactions between upland and tidal wetland grass species to shed light on zonation in these species’ distribution patterns, in the context of understanding how their distributions may change with sea level rise and forest dieback. Across the coastal marsh-forest ecotone, there are stark shifts in two vital conditions for plants: salinity and light availability. We measured these abiotic conditions and plant productivity at sites spanning the ecotone and within a forest clear-cut, where canopy shading had been experimentally removed. In a greenhouse manipulation of plant species neighbor, salinity, and light availability, we hypothesized that plant interactions would become more facilitative in stressful conditions and that more salt tolerant species would also be more light-demanding. Species salt tolerance followed an expected ranking based on species zonation in the field, but all species responded similarly to reductions in light. Plant interactions in all treatments were negative or neutral, never facilitative. Despite low resource availability of light and elevated levels of salinity within the marsh-forest ecotone, plant interactions there reflect a benign stress environment, in which competition is predominant and where resource limitation, stress, and competition have additive, negative effects on plant performance.</div></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"9 ","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Change Ecology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666900525000048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ecotone communities are areas of high species turnover and steep environmental gradients. We investigated how environmental gradients shape species interactions between upland and tidal wetland grass species to shed light on zonation in these species’ distribution patterns, in the context of understanding how their distributions may change with sea level rise and forest dieback. Across the coastal marsh-forest ecotone, there are stark shifts in two vital conditions for plants: salinity and light availability. We measured these abiotic conditions and plant productivity at sites spanning the ecotone and within a forest clear-cut, where canopy shading had been experimentally removed. In a greenhouse manipulation of plant species neighbor, salinity, and light availability, we hypothesized that plant interactions would become more facilitative in stressful conditions and that more salt tolerant species would also be more light-demanding. Species salt tolerance followed an expected ranking based on species zonation in the field, but all species responded similarly to reductions in light. Plant interactions in all treatments were negative or neutral, never facilitative. Despite low resource availability of light and elevated levels of salinity within the marsh-forest ecotone, plant interactions there reflect a benign stress environment, in which competition is predominant and where resource limitation, stress, and competition have additive, negative effects on plant performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信