A central limit theorem for a card shuffling problem

IF 0.9 2区 数学 Q2 MATHEMATICS
Shane Chern , Lin Jiu , Italo Simonelli
{"title":"A central limit theorem for a card shuffling problem","authors":"Shane Chern ,&nbsp;Lin Jiu ,&nbsp;Italo Simonelli","doi":"10.1016/j.jcta.2025.106048","DOIUrl":null,"url":null,"abstract":"<div><div>Given a positive integer <em>n</em>, consider a permutation of <em>n</em> objects chosen uniformly at random. In this permutation, we collect maximal subsequences consisting of consecutive numbers arranged in ascending order called blocks. Each block is then merged, and after all merges, the elements of this new set are relabeled from 1 to the current number of elements. We continue to permute and merge this new set uniformly at random until only one object is left. In this paper, we investigate the distribution of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the number of permutations needed for this process to end. In particular, we find explicit asymptotic expressions for the mean value <span><math><mi>E</mi><mo>[</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>, the variance <span><math><mrow><mi>Var</mi></mrow><mo>[</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>, and higher central moments, and show that <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> satisfies a central limit theorem.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"214 ","pages":"Article 106048"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000433","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a positive integer n, consider a permutation of n objects chosen uniformly at random. In this permutation, we collect maximal subsequences consisting of consecutive numbers arranged in ascending order called blocks. Each block is then merged, and after all merges, the elements of this new set are relabeled from 1 to the current number of elements. We continue to permute and merge this new set uniformly at random until only one object is left. In this paper, we investigate the distribution of Xn, the number of permutations needed for this process to end. In particular, we find explicit asymptotic expressions for the mean value E[Xn], the variance Var[Xn], and higher central moments, and show that Xn satisfies a central limit theorem.
洗牌问题的中心极限定理
给定一个正整数n,考虑随机均匀选择的n个对象的排列。在这种排列中,我们收集由按升序排列的连续数字组成的最大子序列,称为块。然后合并每个块,在所有合并之后,这个新集合的元素被重新标记,从1到当前的元素数。我们继续均匀随机地排列和合并这个新集合,直到只剩下一个对象。在本文中,我们研究了Xn的分布,即该过程结束所需的排列数。特别地,我们找到了均值E[Xn]、方差Var[Xn]和高中心矩的显式渐近表达式,并证明了Xn满足中心极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信