{"title":"Data-driven framework for pothole repair automation using unmanned ground vehicle fleets","authors":"Shripal Mehta, Abiodun B. Yusuf, Sepehr Ghafari","doi":"10.1016/j.autcon.2025.106176","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional pavement repair techniques are time-consuming, labour-intensive, prone to errors, and expose manpower to high-risk road traffic conditions. This paper proposes a data-driven solution for planning and automating the repair process for road potholes using a fleet of unmanned ground vehicles (UGVs). The project encompasses data mining, developing software tailored for fleet management, and enhanced fault tolerance. Additionally, it incorporates the integration of digital twins for advanced simulation purposes. The methodologies involve cross-industry standard processes for data mining (CRISP-DM) and preparation combined with rapid application development (RAD). To optimise repair schedules, the system takes parameters like fleet size, payload capacity, and material requirements based on pothole dimensions. This data-driven project concludes from simulations that a neighbourhood can be patched about 40 % faster and optimised to achieve a 12.5 % reduction in robot inter-travel time using three UGVs per defined residential area of 100,000 m<sup>2</sup> instead of two UGVs in the fleet.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"174 ","pages":"Article 106176"},"PeriodicalIF":9.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092658052500216X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional pavement repair techniques are time-consuming, labour-intensive, prone to errors, and expose manpower to high-risk road traffic conditions. This paper proposes a data-driven solution for planning and automating the repair process for road potholes using a fleet of unmanned ground vehicles (UGVs). The project encompasses data mining, developing software tailored for fleet management, and enhanced fault tolerance. Additionally, it incorporates the integration of digital twins for advanced simulation purposes. The methodologies involve cross-industry standard processes for data mining (CRISP-DM) and preparation combined with rapid application development (RAD). To optimise repair schedules, the system takes parameters like fleet size, payload capacity, and material requirements based on pothole dimensions. This data-driven project concludes from simulations that a neighbourhood can be patched about 40 % faster and optimised to achieve a 12.5 % reduction in robot inter-travel time using three UGVs per defined residential area of 100,000 m2 instead of two UGVs in the fleet.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.