On bipartite graphs with the minimum number of spanning trees

IF 0.7 3区 数学 Q2 MATHEMATICS
Shicai Gong, Yue Xu, Peng Zou, Jiaxin Wang
{"title":"On bipartite graphs with the minimum number of spanning trees","authors":"Shicai Gong,&nbsp;Yue Xu,&nbsp;Peng Zou,&nbsp;Jiaxin Wang","doi":"10.1016/j.disc.2025.114514","DOIUrl":null,"url":null,"abstract":"<div><div>The collection of all (simple and connected) bipartite graphs with cyclomatic number <em>ω</em> is denoted by <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span>. We use <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>a</mi><mo>;</mo><mi>b</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> to denote the graph obtained from the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> by removing <span><math><mi>a</mi><mo>−</mo><mi>c</mi></math></span> edges that are all connected to the same vertex of degree <em>a</em>, here <span><math><mi>a</mi><mo>,</mo><mi>b</mi></math></span> and <em>c</em> are integers with <span><math><mn>2</mn><mo>≤</mo><mi>c</mi><mo>&lt;</mo><mi>a</mi><mo>≤</mo><mi>b</mi></math></span>. The term <span><math><mi>S</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes the skeleton of the graph <em>G</em>, which is defined as the largest induced subgraph of <em>G</em> that contains no pendant vertices.</div><div>In this paper, we investigate the problem of characterizing the graphs within <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> that possess the minimum number of spanning trees. We show that the skeleton of each graph with the minimum number of spanning trees in <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> is either <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span>, where <em>a</em> and <em>b</em> are positive integers with <span><math><mn>2</mn><mo>≤</mo><mi>a</mi><mo>≤</mo><mi>b</mi></math></span> and <span><math><mo>(</mo><mi>a</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>b</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mi>ω</mi></math></span>, or <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>a</mi><mo>;</mo><mi>b</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span>, where <span><math><mi>a</mi><mo>,</mo><mi>b</mi></math></span> and <em>c</em> are positive integers satisfying <span><math><mn>2</mn><mo>≤</mo><mi>c</mi><mo>&lt;</mo><mi>a</mi><mo>≤</mo><mi>b</mi></math></span> and <span><math><mi>c</mi><mo>−</mo><mn>1</mn><mo>+</mo><mo>(</mo><mi>a</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>b</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><mi>ω</mi></math></span>. In addition, we establish some structural properties by the method of analysis to further reduce those candidate graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 7","pages":"Article 114514"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001220","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The collection of all (simple and connected) bipartite graphs with cyclomatic number ω is denoted by Bω. We use Ka;bc to denote the graph obtained from the complete bipartite graph Ka,b+1 by removing ac edges that are all connected to the same vertex of degree a, here a,b and c are integers with 2c<ab. The term S(G) denotes the skeleton of the graph G, which is defined as the largest induced subgraph of G that contains no pendant vertices.
In this paper, we investigate the problem of characterizing the graphs within Bω that possess the minimum number of spanning trees. We show that the skeleton of each graph with the minimum number of spanning trees in Bω is either Ka,b, where a and b are positive integers with 2ab and (a1)(b1)=ω, or Ka;bc, where a,b and c are positive integers satisfying 2c<ab and c1+(a1)(b1)=ω. In addition, we establish some structural properties by the method of analysis to further reduce those candidate graphs.
关于具有最少生成树的二叉图
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信