{"title":"O-GlcNAc transferase is a key regulator of DNA methylation and transposon silencing","authors":"","doi":"10.1038/s41594-025-01507-7","DOIUrl":null,"url":null,"abstract":"Disruption of the enzyme O-GlcNAc transferase in mouse embryonic stem cells unleashes the activity of TET enzymes, which cause genome-wide decreases in DNA methylation and increases in DNA hydroxymethylation. This leads to de-repression of transposable elements, as well as the activation of some nearby genes.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"32 7","pages":"1137-1138"},"PeriodicalIF":10.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-025-01507-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Disruption of the enzyme O-GlcNAc transferase in mouse embryonic stem cells unleashes the activity of TET enzymes, which cause genome-wide decreases in DNA methylation and increases in DNA hydroxymethylation. This leads to de-repression of transposable elements, as well as the activation of some nearby genes.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.