{"title":"On the Anisotropic Velocity Distribution of Newborn Pickup Ions in the Heliosheath","authors":"Senbei Du, Merav Opher and Marc Kornbleuth","doi":"10.3847/2041-8213/adbc9a","DOIUrl":null,"url":null,"abstract":"The evolution of the velocity distribution of pickup ions is crucial for understanding the energetic neutral atom (ENA) fluxes observed by Interstellar Boundary Explorer. Pickup ions in the heliosheath contain two main components: those transmitted across the heliospheric termination shock and those locally created within the heliosheath. In this work, we discuss the velocity distribution of the latter locally created component. We find that pickup ions created by the charge exchange of neutral solar wind (NSW) may be a significant source of the observed ENA fluxes between about 100 eV and 1 keV. Moreover, newborn pickup ions can maintain highly anisotropic velocity distribution in the heliosheath. This is because the kinetic instabilities are weak after the solar wind flow decelerates at the termination shock. Hybrid kinetic simulations show the mirror instability to be the dominant mode for conditions in the heliosheath close to the termination shock. We estimate that effects of NSW and anisotropy may enhance the expected phase space density of newborn pickup ions by more than a factor of 100.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"107 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adbc9a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The evolution of the velocity distribution of pickup ions is crucial for understanding the energetic neutral atom (ENA) fluxes observed by Interstellar Boundary Explorer. Pickup ions in the heliosheath contain two main components: those transmitted across the heliospheric termination shock and those locally created within the heliosheath. In this work, we discuss the velocity distribution of the latter locally created component. We find that pickup ions created by the charge exchange of neutral solar wind (NSW) may be a significant source of the observed ENA fluxes between about 100 eV and 1 keV. Moreover, newborn pickup ions can maintain highly anisotropic velocity distribution in the heliosheath. This is because the kinetic instabilities are weak after the solar wind flow decelerates at the termination shock. Hybrid kinetic simulations show the mirror instability to be the dominant mode for conditions in the heliosheath close to the termination shock. We estimate that effects of NSW and anisotropy may enhance the expected phase space density of newborn pickup ions by more than a factor of 100.