{"title":"A toxin-antitoxin system provides phage defense via DNA damage and repair","authors":"Huan Pu, Yuxin Chen, Xinjun Zhao, Lunzhi Dai, Aiping Tong, Dongmei Tang, Qiang Chen, Yamei Yu","doi":"10.1038/s41467-025-58540-9","DOIUrl":null,"url":null,"abstract":"<p>Widespread in bacteria and archaea, toxin-antitoxin (TA) systems have been recently demonstrated to function in phage defense. Here we characterize the anti-phage function of a type IV TA system, ShosTA. Using structural and biochemical approaches, we show that ShosT couples phosphoribosyltransferase and pyrophosphatase activities to disrupt purine metabolism, resulting in DNA duplication, cell filamentation and ultimate cell death. ShosA binds DNA and likely recruits other proteins to facilitate DNA homologous recombination to antagonize ShosT’s toxicity. We identify Gp0.7 of T7 phage as a trigger for ShosTA system via shutting off the protein synthesis, and the C-terminus-mediated intrinsic instability of ShosA releases the toxicity of the existing ShosT proteins. Collectively, our results provide a novel toxin-antitoxin mechanism for anti-phage immunity and shed light on the triggering of this TA system.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"226 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58540-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Widespread in bacteria and archaea, toxin-antitoxin (TA) systems have been recently demonstrated to function in phage defense. Here we characterize the anti-phage function of a type IV TA system, ShosTA. Using structural and biochemical approaches, we show that ShosT couples phosphoribosyltransferase and pyrophosphatase activities to disrupt purine metabolism, resulting in DNA duplication, cell filamentation and ultimate cell death. ShosA binds DNA and likely recruits other proteins to facilitate DNA homologous recombination to antagonize ShosT’s toxicity. We identify Gp0.7 of T7 phage as a trigger for ShosTA system via shutting off the protein synthesis, and the C-terminus-mediated intrinsic instability of ShosA releases the toxicity of the existing ShosT proteins. Collectively, our results provide a novel toxin-antitoxin mechanism for anti-phage immunity and shed light on the triggering of this TA system.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.