Emily A. Reasoner, Hsin-Ju Chan, Timothy J. Aballo, Kylie J. Plouff, Seungwoo Noh, Ying Ge, Song Jin
{"title":"In Situ Metal–Organic Framework Growth in Serum Encapsulates and Depletes Abundant Proteins for Integrated Plasma Proteomics","authors":"Emily A. Reasoner, Hsin-Ju Chan, Timothy J. Aballo, Kylie J. Plouff, Seungwoo Noh, Ying Ge, Song Jin","doi":"10.1021/acsnano.4c18028","DOIUrl":null,"url":null,"abstract":"Protein biomarkers in human serum provide critical insights into various physiological conditions and diseases, enabling early diagnosis, prognosis, and personalized treatment. However, detecting low-abundance protein biomarkers is challenging due to the presence of highly abundant proteins that make up ∼99% of the plasma proteome. Here, we report the use of in situ metal–organic framework (MOF) growth in serum to effectively deplete highly abundant serum proteins for integrated proteomic analysis. Through biomolecule-mediated nucleation of a zeolitic imidazolate framework (ZIF-8), abundant plasma proteins are selectively encapsulated within ZIF-8 and removed from serum via centrifugation, leaving a depleted protein fraction in the supernatant. Bottom-up proteomics analysis confirmed significant depletion of the topmost abundant proteins, many at depletion levels exceeding 95%. Such depletion enabled the identification of 277 total proteins in the supernatant (uncaptured) fraction in a single-shot analysis, including 54 proteins that were only identified after depletion, 12 drug targets, and many potential disease biomarkers. Top-down proteomics characterization of the captured and uncaptured protein fractions at the proteoform-level confirmed this method is not biased toward any specific proteoform of individual proteins. These results demonstrate that in situ MOF growth can selectively and effectively deplete high-abundance proteins from serum in a simple, low cost, one-pot synthesis to enable integrated top-down and bottom-up proteomic analysis of serum protein biomarkers.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"15 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18028","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein biomarkers in human serum provide critical insights into various physiological conditions and diseases, enabling early diagnosis, prognosis, and personalized treatment. However, detecting low-abundance protein biomarkers is challenging due to the presence of highly abundant proteins that make up ∼99% of the plasma proteome. Here, we report the use of in situ metal–organic framework (MOF) growth in serum to effectively deplete highly abundant serum proteins for integrated proteomic analysis. Through biomolecule-mediated nucleation of a zeolitic imidazolate framework (ZIF-8), abundant plasma proteins are selectively encapsulated within ZIF-8 and removed from serum via centrifugation, leaving a depleted protein fraction in the supernatant. Bottom-up proteomics analysis confirmed significant depletion of the topmost abundant proteins, many at depletion levels exceeding 95%. Such depletion enabled the identification of 277 total proteins in the supernatant (uncaptured) fraction in a single-shot analysis, including 54 proteins that were only identified after depletion, 12 drug targets, and many potential disease biomarkers. Top-down proteomics characterization of the captured and uncaptured protein fractions at the proteoform-level confirmed this method is not biased toward any specific proteoform of individual proteins. These results demonstrate that in situ MOF growth can selectively and effectively deplete high-abundance proteins from serum in a simple, low cost, one-pot synthesis to enable integrated top-down and bottom-up proteomic analysis of serum protein biomarkers.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.