Glass Transition, Liquid Dynamics, and Thermal Degradation in 2D Hybrid Halide Perovskites

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-02 DOI:10.1002/smll.202500311
Owain S. Houghton, Chumei Ye, Alison C. Twitchett-Harrison, Siân E. Dutton, Thomas D. Bennett, A. Lindsay Greer
{"title":"Glass Transition, Liquid Dynamics, and Thermal Degradation in 2D Hybrid Halide Perovskites","authors":"Owain S. Houghton, Chumei Ye, Alison C. Twitchett-Harrison, Siân E. Dutton, Thomas D. Bennett, A. Lindsay Greer","doi":"10.1002/smll.202500311","DOIUrl":null,"url":null,"abstract":"2D hybrid organic–inorganic perovskites (2D HOIPs) are of interest for optoelectronic and phase-change applications. Using ultra-fast (flash) differential scanning calorimetry (FDSC), this study shows the 2D HOIPs (<i>S</i>-Cl-MBA)<sub>2</sub>PbI<sub>4</sub> and (<i>R</i>-Cl-MBA)<sub>2</sub>PbBr<sub>4</sub> (Cl-MBA referring to 4-chloro-α-methylbenzylamine) form a glass on cooling. Both show evidence of a liquid-to-glass transition during quenching from the liquid state; on reheating, a glass-to-liquid transition is followed by crystallization and melting. Using continuous heating in FDSC, the temperature dependence of the liquid viscosity of (<i>S</i>-Cl-MBA)<sub>2</sub>PbI<sub>4</sub> is characterized. The kinetic fragility of the liquid is similar to that of bulk metallic glass-formers and significantly lower than that of organic and phase-change chalcogenide liquids. On cooling the liquid, glass formation is first impeded by thermal degradation, then crystallization. The stages of thermal degradation can be related to known mechanisms. This study highlights the reduced glass-transition temperature and the liquid fragility as key parameters in guiding the optimization of 2D HOIP compositions for targeted applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"98 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202500311","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2D hybrid organic–inorganic perovskites (2D HOIPs) are of interest for optoelectronic and phase-change applications. Using ultra-fast (flash) differential scanning calorimetry (FDSC), this study shows the 2D HOIPs (S-Cl-MBA)2PbI4 and (R-Cl-MBA)2PbBr4 (Cl-MBA referring to 4-chloro-α-methylbenzylamine) form a glass on cooling. Both show evidence of a liquid-to-glass transition during quenching from the liquid state; on reheating, a glass-to-liquid transition is followed by crystallization and melting. Using continuous heating in FDSC, the temperature dependence of the liquid viscosity of (S-Cl-MBA)2PbI4 is characterized. The kinetic fragility of the liquid is similar to that of bulk metallic glass-formers and significantly lower than that of organic and phase-change chalcogenide liquids. On cooling the liquid, glass formation is first impeded by thermal degradation, then crystallization. The stages of thermal degradation can be related to known mechanisms. This study highlights the reduced glass-transition temperature and the liquid fragility as key parameters in guiding the optimization of 2D HOIP compositions for targeted applications.

Abstract Image

二维有机-无机杂化包晶(2D HOIPs)在光电和相变应用方面具有重要意义。本研究利用超快速(闪烁)差示扫描量热法(FDSC)显示,二维 HOIPs (S-Cl-MBA)2PbI4 和 (R-Cl-MBA)2PbBr4 (Cl-MBA 指 4-氯-α-甲基苄胺)在冷却时形成玻璃。这两种物质在从液态淬火时都显示出液态向玻璃态的转变;在重新加热时,玻璃态向液态的转变之后是结晶和熔化。利用在 FDSC 中的连续加热,研究了 (S-Cl-MBA)2PbI4 液体粘度的温度依赖性。该液体的动力学脆性与块状金属玻璃形成体的动力学脆性相似,明显低于有机液体和相变铬化液体的动力学脆性。冷却液体时,玻璃的形成首先受到热降解的阻碍,然后是结晶。热降解的各个阶段与已知的机制有关。这项研究强调,降低玻璃化转变温度和液体脆性是指导优化二维 HOIP 成分以实现目标应用的关键参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信