Chiral Zinc Sulfide Nanoparticles Scavenging Reactive Oxygen Species for Remodeling Intestinal Homeostasis

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aihua Qu, Jun Luo, Baimei Shi, Changlong Hao, Maozhong Sun, Liguang Xu, Hua Kuang
{"title":"Chiral Zinc Sulfide Nanoparticles Scavenging Reactive Oxygen Species for Remodeling Intestinal Homeostasis","authors":"Aihua Qu, Jun Luo, Baimei Shi, Changlong Hao, Maozhong Sun, Liguang Xu, Hua Kuang","doi":"10.1002/anie.202503654","DOIUrl":null,"url":null,"abstract":"Elevated levels of reactive oxygen species (ROS) and gut microbiota dysbiosis are crucial factors that exacerbate inflammatory bowel disease (IBD). To address this, we successfully synthesized zinc sulfide nanoparticles (ZnS NPs) with a particle size of approximately 500 nm and a maximum g-factor of 0.07, utilizing l-/d-cysteine as chiral ligands. In vitro experiments revealed that these chiral ZnS NPs could enter macrophages through the CD44 and clathrin pathways, which enhanced the ability to scavenge ROS, in turn significantly inhibited the NF-κB and NLRP3 signaling pathways, thereby reducing the secretion of TNF-α, IL-6, and IL-1β, while upregulating IL-10. In vivo experimental data showed that l-ZnS NPs outperformed 5-aminosalicylic acid, significantly improving body weight, reducing the IBD activity index, and attenuating tissue damage, concurrently, l-ZnS NPs exhibited a marked prophylactic effect. The benchmark studies verified that l-ZnS NPs increased the abundance of the beneficial Lachnospiraceae NK4A136 by 10.55-fold and decreased harmful Enterobacter by 2914.00-fold, thereby reshaping the intestinal microecological balance. Pharmacokinetic and biosafety assessments confirmed the safety of l-ZnS NPs. Our findings indicate that chiral ZnS NPs hold great potential as nanodrugs for the treatment and prevention of IBD, providing an important foundation for the development of IBD therapeutic strategies.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"66 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503654","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated levels of reactive oxygen species (ROS) and gut microbiota dysbiosis are crucial factors that exacerbate inflammatory bowel disease (IBD). To address this, we successfully synthesized zinc sulfide nanoparticles (ZnS NPs) with a particle size of approximately 500 nm and a maximum g-factor of 0.07, utilizing l-/d-cysteine as chiral ligands. In vitro experiments revealed that these chiral ZnS NPs could enter macrophages through the CD44 and clathrin pathways, which enhanced the ability to scavenge ROS, in turn significantly inhibited the NF-κB and NLRP3 signaling pathways, thereby reducing the secretion of TNF-α, IL-6, and IL-1β, while upregulating IL-10. In vivo experimental data showed that l-ZnS NPs outperformed 5-aminosalicylic acid, significantly improving body weight, reducing the IBD activity index, and attenuating tissue damage, concurrently, l-ZnS NPs exhibited a marked prophylactic effect. The benchmark studies verified that l-ZnS NPs increased the abundance of the beneficial Lachnospiraceae NK4A136 by 10.55-fold and decreased harmful Enterobacter by 2914.00-fold, thereby reshaping the intestinal microecological balance. Pharmacokinetic and biosafety assessments confirmed the safety of l-ZnS NPs. Our findings indicate that chiral ZnS NPs hold great potential as nanodrugs for the treatment and prevention of IBD, providing an important foundation for the development of IBD therapeutic strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信