Excellent Electromechanical Compatibility in Alkaline Niobate Composite Achieved by Optimizing Internal Defects and Extrinsic Local Stress Field

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hongjiang Li, Ning Chen, Jie Xing, Wenbin Liu, Zhi Tan, Manjing Tang, Hao Chen, Mingyue Mo, Jianguo Zhu
{"title":"Excellent Electromechanical Compatibility in Alkaline Niobate Composite Achieved by Optimizing Internal Defects and Extrinsic Local Stress Field","authors":"Hongjiang Li, Ning Chen, Jie Xing, Wenbin Liu, Zhi Tan, Manjing Tang, Hao Chen, Mingyue Mo, Jianguo Zhu","doi":"10.1021/acsami.4c22607","DOIUrl":null,"url":null,"abstract":"Lead-free piezoelectric materials with excellent electromechanical compatibility are essential for industrial applications. However, attaining both a large piezoelectric coefficient (<i>d</i><sub>33</sub>) and a high mechanical quality factor (<i>Q</i><sub>m</sub>) is generally regarded as challenging because of the inherent trade-off among these properties. In this work, the reduction of internal defects and the redistribution of the second phase in potassium sodium niobate (KNN) based composite ceramics are achieved through a heat treatment technique. This method can achieve a significant improvement of electromechanical properties (<i>d</i><sub>33</sub> = 415 pC/N and <i>Q</i><sub>m</sub> = 120), which effectively overcomes the contradiction between piezoelectric properties and mechanical losses. Structural characterizations indicated that the improved electromechanical performance of the annealed KNN composite ceramics could be attributed to the optimized internal defects and the extrinsic local stress field. These findings offer a promising route to enhance the commercial feasibility of lead-free KNN-based piezoelectric ceramics, representing significant progress in the development of high-performance and environmentally friendly piezoelectric materials.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"73 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c22607","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lead-free piezoelectric materials with excellent electromechanical compatibility are essential for industrial applications. However, attaining both a large piezoelectric coefficient (d33) and a high mechanical quality factor (Qm) is generally regarded as challenging because of the inherent trade-off among these properties. In this work, the reduction of internal defects and the redistribution of the second phase in potassium sodium niobate (KNN) based composite ceramics are achieved through a heat treatment technique. This method can achieve a significant improvement of electromechanical properties (d33 = 415 pC/N and Qm = 120), which effectively overcomes the contradiction between piezoelectric properties and mechanical losses. Structural characterizations indicated that the improved electromechanical performance of the annealed KNN composite ceramics could be attributed to the optimized internal defects and the extrinsic local stress field. These findings offer a promising route to enhance the commercial feasibility of lead-free KNN-based piezoelectric ceramics, representing significant progress in the development of high-performance and environmentally friendly piezoelectric materials.

Abstract Image

通过优化内部缺陷和外部局部应力场实现碱性铌酸盐复合材料的优异机电兼容性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信