Systematic characterisation of microplastics released from disposable medical devices using laser direct infrared spectroscopy

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Chuanfeng Chen, Shanshan Du, Ziyan Liu, Wenfei Li, Fangbiao Tao, Xuejiao Qie
{"title":"Systematic characterisation of microplastics released from disposable medical devices using laser direct infrared spectroscopy","authors":"Chuanfeng Chen, Shanshan Du, Ziyan Liu, Wenfei Li, Fangbiao Tao, Xuejiao Qie","doi":"10.1016/j.aca.2025.343982","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Human exposure to microplastics (MPs) is widespread, attracting significant attention from both the public and the scientific community. Although several direct and indirect exposure pathways have been investigated, the extent of MP exposure from disposable medical devices remains poorly understood and warrants further research.<h3>Results</h3>This work indicates that many MPs (10-30 μm) were released during the simulated use of disposable medical devices. Two common medical devices–disposable infusion tubes and blood needles–were selected as the research subjects. Analysis utilizing laser direct infrared (LDIR) revealed that plastic released from infusion tubes primarily consisted of polyamide (PA), polyvinyl chloride (PVC), and polyethene terephthalate (PET), with an average total number (ATN) of 11.8 particles/mL. MPs released from blood collection needles mainly consisted of polyurethane (PU) and PET, with an ATN of 82.7 particles/mL. For a 0.9% normal saline, the ATN released from the infusion tubes during the stimulating infusion scenario at room temperature (4 h) was approximately 16 particles/mL, primarily consisting of PA, PVC, and PET. Additionally, the release of MPs increased with rising temperatures. Under the same conditions, ATN release from the blood collection needles was approximately 84.4 particles/mL, mainly from PA, PVC, and PU.<h3>Significance</h3>This implies that MPs can enter the bloodstream directly through infusion tubes and blood collection needles, highlighting the need for greater attention to the risk of patient exposure.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"67 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.343982","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Human exposure to microplastics (MPs) is widespread, attracting significant attention from both the public and the scientific community. Although several direct and indirect exposure pathways have been investigated, the extent of MP exposure from disposable medical devices remains poorly understood and warrants further research.

Results

This work indicates that many MPs (10-30 μm) were released during the simulated use of disposable medical devices. Two common medical devices–disposable infusion tubes and blood needles–were selected as the research subjects. Analysis utilizing laser direct infrared (LDIR) revealed that plastic released from infusion tubes primarily consisted of polyamide (PA), polyvinyl chloride (PVC), and polyethene terephthalate (PET), with an average total number (ATN) of 11.8 particles/mL. MPs released from blood collection needles mainly consisted of polyurethane (PU) and PET, with an ATN of 82.7 particles/mL. For a 0.9% normal saline, the ATN released from the infusion tubes during the stimulating infusion scenario at room temperature (4 h) was approximately 16 particles/mL, primarily consisting of PA, PVC, and PET. Additionally, the release of MPs increased with rising temperatures. Under the same conditions, ATN release from the blood collection needles was approximately 84.4 particles/mL, mainly from PA, PVC, and PU.

Significance

This implies that MPs can enter the bloodstream directly through infusion tubes and blood collection needles, highlighting the need for greater attention to the risk of patient exposure.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信