{"title":"Single-Well Colorimetric Sensor Array for Discrimination and Smartphone-assisted Detection of Catecholamines Based on Fe-Carbon Dots Nanozymes","authors":"Guang-Ming Bao, Dan-Dan Chen, Yi-Fan Xia, Zhi-Qiang Cai, Shun-Qiang Cui, Xia Wei, Zhen-Chong Dou, Yuan Yuan, Akimana Sandra, Hou-Qun Yuan","doi":"10.1016/j.aca.2025.343997","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Catecholamines (CAs), such as noradrenaline (NE), adrenaline (AD), and dopamine (DA), are essential signaling mediators that regulate various physiological functions. Monitoring their levels is crucial for studying and diagnosing diseases, as abnormal concentrations are associated with numerous health conditions. However, distinguishing between these CAs is challenging due to their highly similar molecular structures.<h3>Results</h3>In this study, Fe-doped carbon dot-based nanozymes (<strong>Fe-CDs</strong>) with strong peroxidase-like activity were synthesized using a simple one-pot method. <strong>Fe-CDs</strong>-based sensing systems exhibit excellent stability, reproducibility, sensitivity (with detection limits of 26.6 nM for NE, 46.0 nM for AD, and 33.3 nM for DA), and anti-interference properties. A triple-channel single-well colorimetric sensor array was developed by collecting the absorbance at 20, 40, and 60 min as sensing units, enabling the effective differentiation and identification of various CAs.<h3>Significance</h3>The <strong>Fe-CDs</strong>-based system has proven capable of detecting CAs in real human urine and fetal bovine serum. Additionally, the <strong>Fe-CDs</strong>-based smartphone-assisted platform provides efficient, highly sensitive, and on-site CAs detection, making it highly promising for biomedical and diagnostic applications.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"231 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.343997","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Catecholamines (CAs), such as noradrenaline (NE), adrenaline (AD), and dopamine (DA), are essential signaling mediators that regulate various physiological functions. Monitoring their levels is crucial for studying and diagnosing diseases, as abnormal concentrations are associated with numerous health conditions. However, distinguishing between these CAs is challenging due to their highly similar molecular structures.
Results
In this study, Fe-doped carbon dot-based nanozymes (Fe-CDs) with strong peroxidase-like activity were synthesized using a simple one-pot method. Fe-CDs-based sensing systems exhibit excellent stability, reproducibility, sensitivity (with detection limits of 26.6 nM for NE, 46.0 nM for AD, and 33.3 nM for DA), and anti-interference properties. A triple-channel single-well colorimetric sensor array was developed by collecting the absorbance at 20, 40, and 60 min as sensing units, enabling the effective differentiation and identification of various CAs.
Significance
The Fe-CDs-based system has proven capable of detecting CAs in real human urine and fetal bovine serum. Additionally, the Fe-CDs-based smartphone-assisted platform provides efficient, highly sensitive, and on-site CAs detection, making it highly promising for biomedical and diagnostic applications.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.